The Holy Grail of Gradual Security

PL Wonks Seminar - Logic Seminar, Spring 2024

Tianyu Chen

Computer Science, Indiana University

©The Achievement of the Grail. Tapestries by Morris & Co, 1890. Birmingham Museum and Art Gallery

1/37

Road Map

1= Background:

o Information flow properties and noninterference

o Information flow control: static, dynamic, gradual

o The gradual guarantee

o The tension between noninterference and the gradual guarantee
» A;c in Action

Solving the Tension Between Noninterference and the Gradual
Guarantee
o Type-Based Reasoning in A

» Coercion-based Semantics for Gradual Security

» Meta-theoretical Results of A\

2/37

Information-Flow and Noninterference

Consider boolean negation. Can we infer output from input?

let output = —input

Yes!

» Requires witnessing at least two executions:
input = true, output = false and input = false,output = true

» An information-flow property is a hyperproperty: a predicate
on sets of executions

» Noninterference: * two successful executions of a program
produce the same value for different input.

*Specifically, termination-insensitive noninterference (TINI) for a functional programming language

3/37

Information-Flow Control (IFC)

» Security labels. Label input as high; output as low.

Track and check the security labels
» IFCin a programming language, traditionally
o Static: using a type system
o Dynamic: using runtime monitoring
» A gradual security programming language

o embeds both static and dynamic IFC
o enables seamless transition between static and dynamic
specific: low, high

o security label annotations .
statically unknown: x

4/37

Review: Static IFC Using a Type System

Modeling input and output:

user-input : Unit;,, — Boolpig publish : Boolj,, — Unit,,

Consider a statically-typed program:

let fconst A b : Boolpg,. false in

let input user-input () in

let result = fconst input in
publish result

v’ Well-typed and v/ Runs successfully tounit

always false
» Why? The return value of fconst is]
of low-security

» No runtime check!

» IFC enforced by the type system alone

s/37

Guarding Against Illegal Explicit Flows, Statically

Consider another fully static program:

let fid Ab : Booly, . b in

let input = user-input () in

let result = fid input in // error
publish result

X Ill-typed. Why?
» Illegal explicit flow from the high-security input to fid

o fidexpects low argument

3¢ Program rejected by type-checker. Illegal explicit flow ruled

out at compile time

6/37

Guarding Against Illegal Implicit Flows, Statically

Different observable behaviors in different branches:

let flip : Boolpig, — Booly,, =

A b : Boolpg,. if b then false else true in
let input = user-input () in
let result = flip input in

publish result

X Tll-typed
» Security label on the type of if is the join of its branches (both
low) and the branch condition (high).
o Expected: low (from type annotation Bool,,)
o Actual: high (because of conditional)
3¢ high K low, thus rejected by type-checker. Illegal implicit flow
ruled out at compile time

7/37

Guarding Against Illegal Explicit Flows, Dynamically

Consider the following dynamically-typed fid example that could

potentially leak information through explicit flow:

let fid = ANb : Bool,. b in

let input user-input () in

let result = fid input in // error
publish result

v’ Well-typed but X Fails at runtime
» The program errors regardless of input

» A runtime happens before the call to publish and checks
whether high can flow to low (of course, no)

3% Illegal explicit flow ruled out at runtime

"We annotate Bool explicitly, which conforms with the syntax of /\;FC

8/37

Against Illegal Implicit Flows, Dynamically

Consider the following dynamically-typed f1ip example that could
potentially leak information through implicit flow:

let flip : Bool, — Bool,

ANb : Bool,. if b then false else true in
let input = user-input () in
let result = flip input in

publish result

v’ Well-typed but X Fails at runtime
» The program (again) errors regardless of input
» flip produces a high value because of high branch condition

» A runtime happens before the call to publish and checks
whether high can flow to low (of course, no)

3% Illegal implicit flow ruled out at runtime

9/37

Gradual Typing Bridges Static and Dynamic IFC

Consider the following partially annotated version of flip. The
return value must be low, because we intend to output the result:

let flip : Bool, — Booly, =

AN b : Bool, . if b then false else true in
let input = user-input () in
let result = flip input in

publish result

v Well-typed bur X Fails at runtime (for both true and false)
o thus preventing the leak through implicit flow

» The information flow violation is detected ealier than the
dynamic version, as f1ip returns

3¢ Checking happens on the boundaries between statically- and
dynamically-typed code fragments

10/37

The Gradual Guarantee

b3 Removing annotations from a correctly running program:
Example: (42 : low : high) 3 (42 : » : high) 3 (42 : % :)

— ... results in the same runtime behavior (42)

% Adding annotations may introduce more errors:
Example: (42 : : » :) & (42 : high : = : low)
o (42 : % :x:%) | 42but (42 : high : : low) | error

u/37

Satisfying Noninterference and the Gradual
Guarantee in One Programming Language

..ishard according to the literature:

“We believe that there might be an inherent incompatibility
between the strictness required to enforce a hyper-property like
noninterference, and the optimistic flexibility dictated by the dynamic
gradual guarantee.”

Matias Toro, Ronald Garcia, and Eric Tanter. 2018. Type-Driven Gradual Security with References

“There is some recent evidence that the dynamic gradual guarantee —
which some see as essential to gradual typing — is incompatible with
various hyperproperties, like noninterference and parametricity.”

Michael Greenberg. 2019. The Dynamic Practice and Static Theory of Gradual Typing

12/37

Review: No-Sensitive-Upgrade Checking

>

No—sensitive-upgrade (NSU) (Austin and Flanagan 2009) prevents

implicit flow leaks through writes to mutable references
For gradual typing, NSU happens at runtime, when type

information is insufficient in deciding if a heap write is secure

Program that potentially leaks information through the heap:

let input : Bool, = user-input () in

let a = ref low true in
if input then a := false else a := true ;
publish (! a)

Well-typed butr X Fails at runtime (for both true and false)

NSU checking terminates this program, because it attempts
to write to a 1ow memory location under a high execution
context (PC), thus preventing the leak through heap

13/37

The Tension (in a Nutshell)

Toro et al. [2018] discover a tension between noninterference and
the gradual guarantee in their language design, GSLgef.
Counterexample of the gradual guarantee in GSLges:

Left: less precise, more dynamic | Right: more precise, more static

. let x = user-input () in let x = user-input () in

. let y = ref Bool, true, in let y = ref Boolpig, trueyig, in
if x then (y := falsenig) if x then (y := falseniq)

. else () else ()

v’ Both are well-typed

v/ The more precise (Right) program runs SuCCGSSﬁlﬂy tounit

X The less precise (Left) program errors!
o In GSLgef, * corresponds to the interval [1ow, high]

% Violates the gradual guarantee!

14/37

Possible Sources of the Tension

Lang, fo)ninter— Gradual Typej—guic.ied NSU Ru.ntime
erence Guarantee | classification security labels

GSLRef e _l__-X v v {low, high, x}

GLIO 4 e |__--X v {low, high}

WHILE® v -l o] - X {Low, high, *}

Afrc (ours) 4 v — 4 _//__’_ {1ow, high}

15/37

Road Map

» Background

= N

Irc in Action:

Solving the Tension Between Noninterference and the Gradual
Guarantee
o Type-Based Reasoning in Aff

» Coercion-based Semantics for Gradual Security

» Meta-theoretical Results of Alre

16/37

Solution to the Tension, in Af¢;

I

. let y ¢

4

Left: less precise, more dynamic

let x = user-input () in
(Ref Bool,).
ref high truepig, in
if x then (y := falsenig)
else ()

Both are well-typed

Right: more precise, more static

let x = user-input () in

let y : (Ref Boolhigh)nigh
ref high trueig, in

if x then (y := falsenig)
else ()

v
v/ The more precise (Right) program runs Successfully tounit
v

The less precise (Left) one also runs successfully rounit,

RoA
"

Problem solved!

But why?

Does 7201 violate the gradual guarantee!

17/37

I

I

Less precise in GSLgef: More precise in GSLRges:
let x = user-input () in let x = user-input () in
. let y = ref Bool, true, in let y = ref Boolpg truepig
if x then (y := falsenig) if x then (y := falsenig)
else () else ()
Less precision in AJ: More precise in AJ:
let x = user-input () in let x = user-input () in
. let y : (RefBool,), = let y : (Ref Boolpigh)nigh =
ref high trueng in ref high trueyg in
if x then (y := falseniq) if x then (y := falsepig)
else () else ()
In A%, Security labels on type annotations can be Speciﬁc or *,

but those on literals and memory locations stay speciﬁc)

in

18/37

Omitted security label annotations on literals default to low:

Less precise in GSLget: Less precision in AJ:
let x = user-input () in let x = user-input () in

_ . let y : (RefBool,), =

let y = ref Bool, true, in £ hich t .

if x then (y := falsenigp) rer high true in

else () if x Z;\zz E\)/ := false)

19/37

Solving the Tension in Af;; (Summary)
Design choices of GSLgef:

rity labels on both types and literals can be »

labels can also be » (d on literals)

» Runtime has to “guess

» Runtime s€

— more runtime
e gradual guarantee!

. . .
Design choices of)\IFC.

» Security labels on type annotations may decrease in
prCClSIOH (RE'F BOO].*)* c (RE'F BOOlhigh)high
o NSU checking happens. Heap IFC policy enforced at runtime
» Labels on literals and memory locations remain specific

o security of data: only the programmer knows; must not be inferred
— runtime security levels remain specific during program execution

20/37

Security Coercions as Runtime IFC Monitor

Revisit the dynamically-typed /\;FC program:

let flip : Bool, — Bool, =
AN b : Bool, . if b then false else true in
let input = user-input () in
let result = flip input in
publish result

Compile the A7, program to the following cast calculus Af;. term,

by making all casts explicit:

let flip = A b . if b then (false (low!))

else (true (low!)) in
let input user-input () in
let result = flip (input <high!)) in
publish (result (low?”))

21/37

Reducing the A{;, term blames the projection (before calling publish):

let result = ((A b. if b then (false{low!)) else ...)
—* (true {(high!))) in (1)
publish (result {(low?”))

let result = prot low (if (true{ high!))

*

— then (false(low!)) else ...) in (2)
publish (result (low?”))

. let result = prot low (prot high (false{low!))) in

—) publish (result {low?")) G)

« let result = prot low (false(f1;high!)) in

publish (result (low?”)) (4)

—* publish (false(1; high!; low?”)) (5)
—* blame (6)

Sequencing models explicit flow. Stamping models implicit flow.
Checking by reducing coercion sequences

22/37

Type-Based Reasoning in Afg;

» Type-based reasoning: Toro et al. [2018] observe that security
typing induces “free theorems” about noninterference
» Type-based reasoning is the synergy of two design choices:
1. Vigilance
2. Type-Guided Classification
» GLIO (Azevedo de Amorim etal. 2020) satisfies the gradual guarantee by
sacrificing type-guide classification, which they claim to be the
reason GSLRef(Toro eral. 2018) violates the gradual guarantee

> Al supports type-based reasoning just like GSLger

23/37

Vigilance: Type-Based Reasoning for Explicit Flows

Consider the example from Toro et al. [2018]:

let mix : Inty, = Inthign = Intyg, =
AN pub priv .
if pub < (priv : Int, : Inty,) then 1 else 2 in
mix 110w 510w

Free theorem: Either (@ the low result of mix never depends
on the high priv argument or (2) mix produces a runtime error.

(GLIO: not vigilant — does not produce an error — violates the free theorem)

In A}

reeo €15 high!s 1ow?”) || blame

24/37

Type-Guided Classification:
Type-Based Reasoning for Implicit Flows

Another example from Toro et al. [2018]:

let mix : Inty, — Int, — Inty, =
A pub priv. if pub < priv then 1 else 2 in
let smix : Inty,, — Intnign — Inty,, =
A pub priv. mix pub priv in
smix Tioy Diow

Free theorem: The smix function either (D returns a value
that does not depend on priv or (2) produces a runtime error

(GLIO: (D not vigilant (2) does not classify values using types — does not

produce an error — violates the free theorem)

25/37

. let mix = A pub priv.
(if (pub (low!)) < priv
, then (1 (low!))
. else (2 (low!))) (low?”) in
. let smix = A pub priv. mix pub (priv (high!)) in
¢ smix 1 (5 (1))

—® (if (1{low!) < 5{1;high!)) then 1{lou!) else ...)<{low?”) @)

—* (if (true{1;high!)) then 1{low!) else ...){low?”) (8)

—* (prot high (1¢low!))){low?”) (9)

—%* (15 high!) (low?”) (10)

—* plame (1)
In A%, the program errors, thus satisfying the free theorem

26/37

Road Map

» Background
L. .
> /\IFC in Action

1= Coercion-based Semantics for Gradual Security

» Meta-theoretical Results of)‘;Fc

27/37

Coercion Calculus for Security Labels

Syntax and typing for security coercions and coercion sequences:

specific security labels ¢ € {low,high}

gradual security labels ¢ == x| /¢
blame labels),
security coercions ¢, d = id(g) | 1| £V | £77 | L
coercion sequences ¢, d == id(g) | L' g1 92 | ¢; ¢
e
FHid(g):g=g¢ —1: low = high Hll =«

L7 ox =0 — 17 :high = low

28/37

Reduction semantics and normal forms of the coercion calculus on
security labels:

NF ¢ NF ¢
NF id(g) NFid(x); £7 NF¢c; ¢! NFec; 1
2id 2
’ 015077 —id(0) f low!; high?” — 1

-

high!s; low?” — 1

c—d
id — NF ¢ _ 1 I\IFE Fc:g1= 92
c;id(g) — ¢ ¢y 1P — 1" g1 low
Fcig2=gs
-1

17g1925¢— 1" g1 93
E—sd NFe c3d— ¢

g —=4 g ’

c;c—djc c;cyd— ¢ c

29/37

(A Glimpse of) the Cast Calculus A

» Representation of PC: label expressions
e,PC::=/(| blame p | e{¢)

» Coercions on values of X¢. .

IFC”
base types L == Unit | Bool
rawtypes T,S == 1 | A5 B|Ref (T,)
types A, B = T,
raw coercions ¢, d, = id(¢) | Refed | (d, c — d)
coercions c¢,d = c¢pyC

» NSU checking: reducing label expressions

n FreshIn u(f) PC{* =" £) —>%* pC!

ref?? £V | p| PC— addrn | (u, € —n— V)

NFE (stamp! PC|g]) {x =" £y —* PC' V{(c) —* W

assign?” (addr n{Refed, c)) VT g|p|PC—> $unit| [l — n— W] p
Fe:Tyg= Sp-d:S; =Ty

30/37

Road Map

» Background
.. .
> >\IFC in Action
» Coercion-based Semantics for Gradual Security

1> Meta-theoretical Results of)\;FC

31/37

Theorem (Compilation preserves types)
IfT9 = M : A, then I'; &; g; low = C M : A

Theorem (Progress)

Suppose PC is well-typed: - PC < g, M is well-typed:

;% g; |PCl = M < A, and the beap pu is well-typed: ¥ - p.
Then either (1) M is a value or (2) M is a blame or (3) M can take a
reduction step: M | 1 | PC— N | 1 for some N and |/’

Theorem (Preservation)

Suppose PC is well-typed: - PC <= g, M is well-typed:

D, %;9;|PCl + M < A and the beap i well-typed: ¥+ .
If M | p| PC— N | i, there exists ¥/ s.r ¥ 2 %,
J;%59;|PClE N <= A, and X' + 1.

32/37

Theorem (The gradual guarantee)
Suppose M, M'" are related by precision:

T & & i low; low; low; low - M EM = Ac A
If M evaluations ro a value:
M| & | Tow —* V' | i
there exists V' and p s.t. M evaluates to V' :
M| |low —*V |p
and the resulting values are related by precision for some 3, ¥':

&5 3 2: ¥ 1ow; low; low; low - VEV <« A A

3/37

The noninterference of Afe is conjectured by that of Agec

*

AJqc performs type-guided classification but Y. does not, so the
value that a)\;FC program produces is at least as secure as the value
produced by the same program in /\EEC.

Theorem (Noninterference of Ag)
If M is well-typed (x:Boolyiq,); &; Low; Low = M : Booly,, and

& | Low = Mz := (by)nign] 4 Vi | i1
| Tow = Mz := (ba)nign] I Va | pio

then Vi = Vs.

34/37

Code and Data Availability

https://github.com/Gradual-Typing/LambdaSecStar

000 xx2 tianyu@beluga:~/workspace/agda/LambdaSecStar

tianyu @ in on git: [17:15:00]
--exclude plot/ --exclude notes/ --exclude bi i --exclude src/CCExpSub .

Agda 22618 19774
Makefile 1k
Markdown

tianyu @ i [17:15:86]

$|

35/37

https://github.com/Gradual-Typing/LambdaSecStar

Main Takeaways

1. Itis possible to satisfy both noninterference and the gradual
guarantee in a gradual security-typed language, provided that
the security level of data remains specific at runtime

2. Gradual information flow can be represented as coercions. In
particular, NSU checking is a special projection that casts PC
to the security of the memory location to modify

3. The key to the semantics design of of a gradual security-typed
language is identifying injections (¢ !) and projections (¢ ")

36/37

Thank you for your attention!

37/37

