
The Holy Grail of Gradual Security
PL Wonks Seminar - Logic Seminar, Spring 2024

Tianyu Chen

Computer Science, Indiana University

0The Achievement of the Grail. Tapestries by Morris & Co, 1890. BirminghamMuseum and Art Gallery
1 / 37

Road Map

+ Background:
˝ Information flow properties and noninterference
˝ Information flow control: static, dynamic, gradual
˝ The gradual guarantee
˝ The tension between noninterference and the gradual guarantee

§ λ‹
IFC in Action
O Solving the Tension Between Noninterference and the Gradual

Guarantee
˝ Type-Based Reasoning in λ‹

IFC

§ Coercion-based Semantics for Gradual Security
§ Meta-theoretical Results of λ‹

IFC

2 / 37

Information-Flow and Noninterference

Consider boolean negation. Can we infer output from input?

let output “ ␣input

Yes! 3

§ Requires witnessing at least two executions:
input “ true, output “ false and input “ false, output “ true

§ An information-flow property is a hyperproperty: a predicate
on sets of executions

§ Noninterference: 1 two successful executions of a program
produce the same value for different input.

1Specifically, termination-insensitive noninterference (TINI) for a functional programming language
3 / 37

Information-Flow Control (IFC)

§ Security labels. Label input as high; output as low.
Track and check the security labels

§ IFC in a programming language, traditionally
˝ Static: using a type system
˝ Dynamic: using runtime monitoring

§ A gradual security programming language
˝ embeds both static and dynamic IFC
˝ enables seamless transition between static and dynamic

˝ security label annotations
"

specific: low, high
statically unknown: ‹

4 / 37

Review: Static IFC Using a Type System
Modeling input and output:
user -input : Unitlow → Boolhigh publish : Boollow → Unitlow
Consider a statically-typed program:

1 let fconst = λ b : Boolhigh. false in
2 let input = user -input () in
3 let result = fconst input in
4 publish result

3 Well-typed and 3 Runs successfully to unit

§ Why? The return value of fconst is
"always false
of low-security

§ No runtime check!
§ IFC enforced by the type system alone

5 / 37

Guarding Against Illegal Explicit Flows, Statically

Consider another fully static program:

1 let fid = λ b : Boollow . b in
2 let input = user -input () in
3 let result = fid input in ーㅄ error
4 publish result

7 Ill-typed. Why?
§ Illegal explicit flow from the high-security input to fid

˝ fid expects low argument

R Program rejected by type-checker. Illegal explicit flow ruled
out at compile time

6 / 37

Guarding Against Illegal Implicit Flows, Statically

Different observable behaviors in different branches:
1 let flip : Boolhigh → Boollow =
2 λ b : Boolhigh. if b then false else true in
3 let input = user -input () in
4 let result = flip input in
5 publish result

7 Ill-typed
§ Security label on the type of if is the join of its branches (both

low) and the branch condition (high).
˝ Expected: low (from type annotation Boollow)
˝ Actual: high (because of conditional)

R high ę low, thus rejected by type-checker. Illegal implicit flow
ruled out at compile time

7 / 37

Guarding Against Illegal Explicit Flows, Dynamically

Consider the following dynamically-typed fid example that could
potentially leak information through explicit flow:

1 let fid = λ b : Bool‹ . b in
2 let input = user -input () in
3 let result = fid input in ーㅄ error
4 publish result

3 Well-typed but 7 Fails at runtime
§ The program errors regardless of input
§ A runtime happens before the call to publish and checks

whether high can flow to low (of course, no)
R Illegal explicit flow ruled out at runtime

1We annotate Bool‹ explicitly, which conforms with the syntax ofλ‹
IFC

8 / 37

Against Illegal Implicit Flows, Dynamically
Consider the following dynamically-typed flip example that could
potentially leak information through implicit flow:

1 let flip : Bool‹ → Bool‹ =
2 λ b : Bool‹ . if b then false else true in
3 let input = user -input () in
4 let result = flip input in
5 publish result

3 Well-typed but 7 Fails at runtime
§ The program (again) errors regardless of input
§ flip produces a high value because of high branch condition
§ A runtime happens before the call to publish and checks

whether high can flow to low (of course, no)
R Illegal implicit flow ruled out at runtime

9 / 37

Gradual Typing Bridges Static and Dynamic IFC
Consider the following partially annotated version of flip. The
return value must be low, because we intend to output the result:

1 let flip : Bool‹ → Boollow =
2 λ b : Bool‹ . if b then false else true in
3 let input = user -input () in
4 let result = flip input in
5 publish result

3 Well-typed but 7 Fails at runtime (for both true and false)
˝ thus preventing the leak through implicit flow

§ The information flow violation is detected ealier than the
dynamic version, as flip returns

R Checking happens on the boundaries between statically- and
dynamically-typed code fragments

10 / 37

The Gradual Guarantee

R Removing annotations from a correctly running program:
Example: (42 : low : high) Ě (42 : ‹ : high) Ě (42 : ‹ : ‹)

Ñ ... results in the same runtime behavior (42)

R Adding annotations may introduce more errors:
Example: (42 : ‹ : ‹ : ‹) Ď (42 : high : ‹ : low)

˝ (42 : ‹ : ‹ : ‹) ó 42 but (42 : high : ‹ : low) ó error

11 / 37

Satisfying Noninterference and the Gradual
Guarantee in One Programming Language

... ishard according to the literature:

“We believe that there might be an inherent incompatibility
between the strictness required to enforce a hyper-property like
noninterference, and the optimistic flexibility dictated by the dynamic
gradual guarantee.”

Matías Toro, Ronald Garcia, and Éric Tanter. 2018. Type-Driven Gradual Security with References

“There is some recent evidence that the dynamic gradual guarantee –
which some see as essential to gradual typing – is incompatiblewith
various hyperproperties, like noninterference and parametricity.”

Michael Greenberg. 2019. The Dynamic Practice and Static Theory of Gradual Typing

12 / 37

Review: No-Sensitive-Upgrade Checking
§ No-sensitive-upgrade (NSU) (Austin and Flanagan 2009) prevents

implicit flow leaks through writes to mutable references
§ For gradual typing, NSU happens at runtime, when type

information is insufficient in deciding if a heap write is secure
§ Program that potentially leaks information through the heap:

1 let input : Bool‹ = user -input () in
2 let a = ref low true in
3 if input then a := false else a := true ;
4 publish (! a)

3 Well-typed but 7 Fails at runtime (for both true and false)

§ NSU checking terminates this program, because it attempts
to write to a lowmemory location under a high execution
context (PC), thus preventing the leak through heap

13 / 37

The Tension (in a Nutshell)
Toro et al. [2018] discover a tension between noninterference and
the gradual guarantee in their language design, GSLRef.
Counterexample of the gradual guarantee in GSLRef:
Left: less precise, more dynamic

1 let x = user -input () in
2 let y = ref Bool‹ true‹ in
3 if x then (y := falsehigh)
4 else ()

Right: more precise, more static
let x = user -input () in
let y = ref Boolhigh truehigh in

if x then (y := falsehigh)
else ()

3 Both are well-typed
3 The more precise (Right) program runs successfully to unit
7 The less precise (Left) program errors!

˝ In GSLRef, ‹ corresponds to the interval [low, high]
6 Violates the gradual guarantee!

14 / 37

Possible Sources of the Tension

Lang. Noninter-
ference

Gradual
Guarantee

Type-guided
classification NSU Runtime

security labels
GSLRef 3 7 3 3 tlow, high, ‹u

GLIO 3 3 7 3 tlow, highu

WHILEG 3 3 3 7 tlow, high, ‹u

λ‹
IFC (ours) 3 3 3 3 tlow, highu

15 / 37

Road Map

§ Background
+ λ‹

IFC in Action:
O Solving the Tension Between Noninterference and the Gradual

Guarantee
˝ Type-Based Reasoning in λ‹

IFC

§ Coercion-based Semantics for Gradual Security
§ Meta-theoretical Results of λ‹

IFC

16 / 37

Solution to the Tension, in λ‹IFC
Left: less precise, more dynamic

1 let x = user -input () in
2 let y : (Ref Bool‹)‹ =
3 ref high truehigh in
4 if x then (y := falsehigh)
5 else ()

Right: more precise, more static
let x = user -input () in
let y : (Ref Boolhigh)high =

ref high truehigh in
if x then (y := falsehigh)

else ()

3 Both are well-typed
3 The more precise (Right) program runs successfully to unit
3 The less precise (Left) one also runs successfully to unit
R Doesnot violate the gradual guarantee!

Problem solved!
But why?

17 / 37

Less precise in GSLRef:
1 let x = user -input () in
2 let y = ref Bool‹ true‹ in
3 if x then (y := falsehigh)
4 else ()

Less precision in λ‹
IFC:

1 let x = user -input () in
2 let y : (Ref Bool‹)‹ =
3 ref high truehigh in
4 if x then (y := falsehigh)
5 else ()

More precise in GSLRef:
let x = user -input () in
let y = ref Boolhigh truehigh in

if x then (y := falsehigh)
else ()

More precise in λ‹
IFC:

let x = user -input () in
let y : (Ref Boolhigh)high =

ref high truehigh in
if x then (y := falsehigh)

else ()

In λ‹
IFC, Security labels on type annotations can be specific or ‹ ,

but those on literals and memory locations stay specific .

18 / 37

Omitted security label annotations on literals default to low:
Less precise in GSLRef:

1 let x = user -input () in
2 let y = ref Bool‹ true‹ in
3 if x then (y := falsehigh)
4 else ()

Less precision in λ‹
IFC:

let x = user -input () in
let y : (Ref Bool‹)‹ =

ref high true in
if x then (y := false)

else ()

19 / 37

Solving the Tension in λ‹IFC (Summary)
Design choices of GSLRef:

§ Security labels on both types and literals can be ‹
§ Runtime security labels can also be ‹ (due to ‹ on literals)
§ Runtime has to “guess” conservatively

Ñ more runtime errors when moving toward less precise
Ñ violates the gradual guarantee!

Design choices of λ‹
IFC:

§ Security labels on type annotationsmay decrease in
precision (Ref Bool‹)‹ Ď (Ref Boolhigh)high

˝ NSU checking happens. Heap IFC policy enforced at runtime

§ Labels on literals andmemory locations remain specific
˝ security of data: only the programmer knows; must not be inferred

Ñ runtime security levels remain specific during program execution
20 / 37

Security Coercions as Runtime IFC Monitor
Revisit the dynamically-typed λ‹

IFC program:

1 let flip : Bool‹ → Bool‹ =
2 λ b : Bool‹ . if b then false else true in
3 let input = user -input () in
4 let result = flip input in
5 publish result

Compile the λ‹
IFC program to the following cast calculus λc

IFC term,
by making all casts explicit:

1 let flip = λ b . if b then (false ⟨ low ! ⟩)
2 else (true ⟨ low ! ⟩) in
3 let input = user -input () in
4 let result = flip (input ⟨ high ! ⟩) in
5 publish (result ⟨ low ?p ⟩)

21 / 37

Reducing the λc
IFC term blames the projection (before calling publish):

ÝÑ˚
let result = ((λ b. if b then (false ⟨ low ! ⟩) else ニㄓㅛ)

(true ⟨ high ! ⟩)) in
publish (result ⟨ low ?p ⟩)

(1)

ÝÑ˚

let result = prot low (if (true ⟨ high ! ⟩)
then (false ⟨ low ! ⟩) else ニㄓㅛ) in

publish (result ⟨ low ?p ⟩)
(2)

ÝÑ˚ let result = prot low (prot high (false ⟨ low ! ⟩)) in
publish (result ⟨ low ?p ⟩) (3)

ÝÑ˚ let result = prot low (false ⟨ Ò ; high ! ⟩) in
publish (result ⟨ low ?p ⟩) (4)

ÝÑ˚ publish (false ⟨ Ò ; high ! ; low ?p ⟩) (5)

ÝÑ˚ blame p (6)

Sequencing models explicit flow. Stamping models implicit flow.
Checking by reducing coercion sequences

22 / 37

Type-Based Reasoning in λ‹IFC

§ Type-based reasoning: Toro et al. [2018] observe that security
typing induces “free theorems” about noninterference

§ Type-based reasoning is the synergy of two design choices:
1. Vigilance
2. Type-Guided Classification

§ GLIO (Azevedo de Amorim et al. 2020) satisfies the gradual guarantee by
sacrificing type-guide classification, which they claim to be the
reason GSLRef(Toro et al. 2018) violates the gradual guarantee

§ λ‹
IFC supports type-based reasoning just like GSLRef

23 / 37

Vigilance: Type-Based Reasoning for Explicit Flows

Consider the example from Toro et al. [2018]:
1 let mix : Intlow → Inthigh → Intlow =
2 λ pub priv .
3 if pub < (priv : Int‹ : Intlow) then 1 else 2 in
4 mix 1low 5low

Free theorem: Either 1⃝ the low result of mix never depends
on the high priv argument or 2⃝ mix produces a runtime error.

(GLIO: not vigilant Ñ does not produce an error Ñ violates the free theorem)

In λ‹
IFC, 5 ⟨ Ò ; high ! ; low ?p ⟩ ó blame p

24 / 37

Type-Guided Classification:
Type-Based Reasoning for Implicit Flows

Another example from Toro et al. [2018]:
1 let mix : Intlow → Int‹ → Intlow =
2 λ pub priv. if pub < priv then 1 else 2 in
3 let smix : Intlow → Inthigh → Intlow =
4 λ pub priv. mix pub priv in
5 smix 1low 5low

Free theorem:The smix function either 1⃝ returns a value
that does not depend on priv or 2⃝ produces a runtime error

(GLIO: 1⃝ not vigilant 2⃝ does not classify values using types Ñ does not
produce an error Ñ violates the free theorem)

25 / 37

1 let mix = λ pub priv.
2 (if (pub ⟨ low ! ⟩) < priv
3 then (1 ⟨ low ! ⟩)
4 else (2 ⟨ low ! ⟩)) ⟨ low ?p ⟩ in
5 let smix = λ pub priv. mix pub (priv ⟨ high ! ⟩) in
6 smix 1 (5 ⟨ Ò ⟩)

ÝÑ˚ (if (1 ⟨ low ! ⟩ < 5 ⟨ Ò ; high ! ⟩) then 1 ⟨ low ! ⟩ else ニㄓㅛ) ⟨ low ?p ⟩ (7)

ÝÑ˚ (if (true ⟨ Ò ; high ! ⟩) then 1 ⟨ low ! ⟩ else ニㄓㅛ) ⟨ low ?p ⟩ (8)

ÝÑ˚ (prot high (1 ⟨ low ! ⟩)) ⟨ low ?p ⟩ (9)

ÝÑ˚ 1 ⟨ Ò ; high ! ⟩ ⟨ low ?p ⟩ (10)

ÝÑ˚ blame p (11)

In λ‹
IFC, the program errors, thus satisfying the free theorem

26 / 37

Road Map

§ Background
§ λ‹

IFC in Action
+ Coercion-based Semantics for Gradual Security

§ Meta-theoretical Results of λ‹
IFC

27 / 37

Coercion Calculus for Security Labels
Syntax and typing for security coercions and coercion sequences:

specific security labels ℓ P tlow, highu
gradual security labels g ::“ ‹ | ℓ

blame labels p, q
security coercions c, d ::“ id(g) | Ò | ℓ ! | ℓ ?p | Kp

coercion sequences c̄, d̄ ::“ id(g) | Kp g1 g2 | c̄ ; c

$ c : g1 ñ g2

$ id(g) : g ñ g $Ò : lowñ high $ ℓ ! : ℓñ ‹

$ ℓ ?p : ‹ ñ ℓ $ Kp : highñ low

28 / 37

Reduction semantics and normal forms of the coercion calculus on
security labels:
NF c̄

NF id(g) NF id(‹) ; ℓ ?p
NF c̄

NF c̄ ; ℓ !
NF c̄

NF c̄ ; Ò

c ; c ÝÑ c

?-id
ℓ ! ; ℓ ?p ÝÑ id(ℓ)

?- Ò low ! ; high ?p ÝÑ Ò

?-K high ! ; low ?p ÝÑ Kp

c̄ ÝÑ d̄

id NF c̄
c̄ ; id(g) ÝÑ c̄

K
NF c̄ $ c̄ : g1 ñ g2
c̄ ; Kp ÝÑ K

p g1 low

ξ-K $ c : g2 ñ g3
K

p g1 g2 ; c ÝÑ K
p g1 g3

ξL
c̄ ÝÑ d̄

c̄ ; c ÝÑ d̄ ; c
ξR

NF c̄ c ; d ÝÑ c1

c̄ ; c ; d ÝÑ c̄; c1

29 / 37

(A Glimpse of) the Cast Calculus λc
IFC

§ Representation of PC: label expressions
e,PC ::“ ℓ | blame p | e ⟨ c̄ ⟩

§ Coercions on values of λc
IFC:

base types ι ::“ Unit | Bool
raw types T, S ::“ ι | A

gc
ÝÑ B | Ref (Tg)

types A,B ::“ Tg

raw coercions cr, dr ::“ id(ι) | Ref c d |
(
d̄, c Ñ d

)
coercions c,d ::“ cr, c̄

§ NSU checking: reducing label expressions
n FreshIn µ(ℓ) PC ⟨ ‹ ñp ℓ ⟩ ÝÑ˚ PC1

ref?p ℓ V | µ | PC ÝÑ addr n | (µ, ℓ ÞÑ n ÞÑ V)

NF c̄ (stamp! PC |c̄|) ⟨ ‹ ñp ℓ̂ ⟩ ÝÑ˚ PC1 V ⟨ c ⟩ ÝÑ˚ W

assign?p (addr n ⟨Ref c d, c̄ ⟩) V T g | µ | PC ÝÑ $ unit | [ℓ̂ ÞÑ n ÞÑ W] µ

$ c : Tg ñ Sℓ̂,$ d : Sℓ̂ ñ Tg

30 / 37

Road Map

§ Background
§ λ‹

IFC in Action
§ Coercion-based Semantics for Gradual Security

+ Meta-theoretical Results of λ‹
IFC

31 / 37

Theorem (Compilation preserves types)
If Γ; g $M : A, then Γ;H; g; low $ C M : A.

Theorem (Progress)
Suppose PC is well-typed: $ PC ð g, M is well-typed:
H; Σ; g; |PC| $M ð A, and the heap µ is well-typed: Σ $ µ.
Then either (1) M is a value or (2) M is a blame or (3) M can take a
reduction step: M | µ | PC ÝÑ N | µ1 for some N and µ1.

Theorem (Preservation)
Suppose PC is well-typed: $ PC ð g, M is well-typed:
H; Σ; g; |PC| $M ð A and the heap µ is well-typed: Σ $ µ.
If M | µ | PC ÝÑ N | µ1, there exists Σ1 s.t Σ1 Ě Σ,
H; Σ1; g; |PC| $ N ð A, and Σ1 $ µ1.

32 / 37

Theorem (The gradual guarantee)
Suppose M , M 1 are related by precision:

H;H;H;H; low; low; low; low $M Ď M 1 ð A Ď A1

If M 1 evaluations to a value:

M 1 | H | low ÝÑ˚ V 1 | µ1

there exists V and µ s.t. M evaluates to V :

M | H | low ÝÑ˚ V | µ

and the resulting values are related by precision for some Σ, Σ1:

H;H; Σ; Σ1; low; low; low; low $ V Ď V 1 ð A Ď A1

33 / 37

The noninterference of λ‹
IFC is conjectured by that of λ‹

SEC:

λ‹
IFC performs type-guided classification but λ‹

SEC does not, so the
value that a λ‹

IFC program produces is at least as secure as the value
produced by the same program in λ‹

SEC.

Theorem (Noninterference of λ‹
SEC)

If M is well-typed (x:Boolhigh);H; low; low $M : Boollow and

H | low $M [x :“ (b1)high] ó V1 | µ1

H | low $M [x :“ (b2)high] ó V2 | µ2

then V1 “ V2.

34 / 37

Code and Data Availability

https://github.com/Gradual-Typing/LambdaSecStar

35 / 37

https://github.com/Gradual-Typing/LambdaSecStar

Main Takeaways

1. It is possible to satisfy both noninterference and the gradual
guarantee in a gradual security-typed language, provided that
the security level of data remains specific at runtime

2. Gradual information flow can be represented as coercions. In
particular, NSU checking is a special projection that casts PC
to the security of the memory location to modify

3. The key to the semantics design of of a gradual security-typed
language is identifying injections (ℓ !) and projections (ℓ ?p)

36 / 37

Thank you for your attention!

37 / 37

