Homotopy theoretic aspects of Constructive Type Theory Reversible Computing

ΗοΤΤ Π

Vikraman Choudhury

PL Wonks September 1, 2017

Acknowledgments

Jacques Carette, Kyle Carter, Chao-Hong Chen, Robert Rose, Amr Sabry, Siva Somayyajula

Problem

What is a *sound* and *complete* model for Π ?

What does *completeness* have to do with *Univalence* ?

A likely solution

П	HoTT	∞ grpd	space
Π_2	$\sum_{X:\mathcal{U}} \parallel X = 2 \parallel$	Δ_2	$K(S_2,1)\simeq \mathbb{R}P^\infty$
Π_n	$\sum_{n:\mathbb{N}}\sum_{X:\mathscr{U}}\parallel X=\operatorname{Fin}n\parallel$	$\coprod_{n\in\mathbb{N}}\Delta_n$	$\oplus_{n\in\mathbb{N}}K(S_n,1)$
Π1⁄2	$\sum_{X:\mathcal{U}} \parallel X = \mathbb{S}^1 \parallel$	$\mathbf{B}\Delta_2$??

Slogan I

Internal logic is better than external logic!

Prelude

$$\Omega \dot{T} \coloneqq * =_{T} *$$
Aut $T \coloneqq T \simeq T$
BAut $T \coloneqq \sum_{X:\mathscr{U}} || X \simeq T ||$

$$\{\![T]\!] \coloneqq \sum_{X:\mathscr{U}} || X = T ||$$

$$T_{0} \coloneqq (T, | \operatorname{refl} T |) : \{\![T]\!]$$

Univalent Fibrations

Let $P : A \rightarrow \mathcal{U}$ be a type family (fibration).

Using transport along P, $f: x =_A y \to P(x) \to P(y)$ $g: x =_A y \to P(y) \to P(x)$ $\omega: x =_A y \to P(x) \simeq P(y)$

> P is univalent if ω is an equivalence. (Lumsdaine, Kapulkin, Voevodsky)

Slogan II

The identity fibration is univalent! — The Univalence Axiom (Voevodsky)

Univalent Universes

Let $\tilde{U} \coloneqq (U : \mathscr{U}, E1 : U \to \mathscr{U})$ be a universe à la Tarski.

 \tilde{U} is *univalent* if E1 is a univalent fibration.

Univalent sub-universes

Lemma:

For any $T : \mathcal{U}$, the sub-universe (**[***T***]]**, **fst**) is univalent. *Corollary:*

 $\Omega \; \{\!\![T]\!\} \simeq \Omega \; \mathsf{BAut} \; T \simeq \mathsf{Aut} \; T$

Semantics of Π_2

Using T = 2:

 $\Omega \; \{\!\![2]\!\!\} \simeq \Omega \; \mathsf{BAut} \; 2 \simeq \mathsf{Aut} \; 2$

Characterize Aut 2:

Aut $2 \simeq 2$

Slogan III

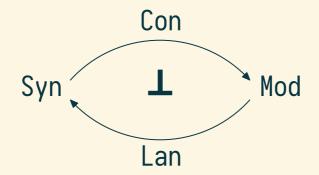
Equivalences are injections!

Aut $2 \simeq 2$

If $f : \mathbb{2} \to \mathbb{2}$ is an equivalence, then f is either id or not.

f(true) = f(false) $\rightarrow true = false$ $\rightarrow \bot$

Soundness & Completeness



Slogan IV

Functions are Functors!

Soundness & Completeness

Level 0:

$$\llbracket_{-} \rrbracket_{0} : \Pi_{2} \to \llbracket 2 \rrbracket$$
$$\lceil_{-} 0 : \llbracket 2 \rrbracket \to \Pi_{2}$$

Level 1:

$$\llbracket_\rrbracket_1 : \prod_{\mathsf{A},\mathsf{B}:\Pi_2} (\mathsf{A} \leftrightarrow_1 \mathsf{B}) \to (\llbracket A \rrbracket_0 = \llbracket B \rrbracket_0)$$
$$\ulcorner_\urcorner_1 : (2_0 = 2_0) \to (\ulcorner2_0 \urcorner_0 \leftrightarrow_1 \ulcorner2_0 \urcorner_0)$$

and so on ...

Epilogue

- Checkout our paper:
 - From Reversible Programs to Univalent Universes and Back https://arxiv.org/abs/1708.02710
- Follow our work on GitHub:
 - > vikraman/2DTypes
 - rrose1/basic-hott
 - ▶ ssomayyajula/HoTT
 - DreamLinuxer/Pi2

