
Amr Sabry
Department of Computer Science

A Computer Science Perspective
on the
Foundations of Quantum Computing

A few CS concepts
(to get in the right state of mind)

Key CS Concept I
Notation

What is?

MCMLXXXIII * DCCXIII

• Complexity of algorithms depends on the notation used

• Not to speak of readability, ease of understanding, maintainability, potential
for errors, etc.

Key CS Concept II
Encoding

Example: complex numbers “uninteresting” as they can be efficiently encoded

Key CS Concept III
Symbolic execution

Key Concept IV
Encapsulation; Representation Independence

Key CS Concept V
Complexity Bounds

• Sorting a deck of 52 cards:

• Find the Ace of spades, put it in position 1

• Find the King of spades, put it in position 2

• Find the Queen of spaces, put it in position 3

• Worst-case complexity: 52 + 51 + 50 + … = 1378 comparisons

• If deck had cards, O()N N2

Quantum Sorting

• Quantum advantage for sorting?

• Absolutely not

• There exist other classical sorting algorithms with O() complexityNlogN

Integer Factorization

• When the numbers are sufficiently large, no efficient non-quantum integer
factorization algorithm is known.

• However, it has not been proven that such an algorithm does not exist.

Current Status

It has been 42 years since Feynman envisioned the use of quantum devices to
efficiently simulate physics.

It has been 27 years since Shor developed a quantum polynomial-time prime
factorization algorithm.

Despite impressive technological advances in the design and realization of
quantum devices, there is yet not a single conclusive demonstration of a
computational quantum advantage.

Why CS Perspective?

• Pragmatic: Reuse huge computational infrastructure to perform simulations,
experiments, explore algorithms, and develop applications.

• Foundational: Examine the boundary between classical and quantum computing to
gain insights about potential sources of quantum advantage

• Retrospective: As early as 1992, some CS researchers predicted “a physics
revolution is brewing in CS.” Anytime now ???

Everything can be encoded using
Toffoli and Hadamard

Formal Result

The Hadamard Mystery

Toffoli
(CCX)

Hadamard
(H)

One conclusion:

The difference is all about
Hadamard

Or if you prefer:

It’s all about QFT (the Quantum
Fourier Transform)

Hadamard QFT
≃

Focus on the Essence

• The Toffoli gate (CCX) is just a reference to (reversible) classical computing.
Easy!

• The Hadamard gate (H) is a reference to any or all of the following:

• the (quantum) Fourier transform,

• a change of basis (from Z basis to X basis and back),

• a square root of the boolean negation gate (the X gate)

• or perhaps another perspective?

Plan

• Start with a “good” model of reversible classical computing

• Explore ways to express Hadamard-like functionality

Textbook Quantum Algorithms

Circuits for Hidden Subgroup Problems
Class includes Deutsch-Jozsa, Bernstein-Vazirani, Simon, Grover

and Shor algorithms

• Hadamard only after initialization

• Hadamard on only

• QFT (generalized Hadamard) only before measurement

|0⟩

How Hadamard is actually used

• After initialization to introduce a uniform superposition

• Before measurement to extract spectral properties

• No uses of Hadamard in the middle !

Example
Factor 15 by computing period of 4x mod 15

=

Bottom 3 qubits can be measured as:

001 so input to QFT = (period = 2)

100 so input to QFT = (period = 2)

|000000⟩ + |001000⟩ + |010000⟩ + |011000⟩ + |100000⟩ + |101000⟩ + |110000⟩ + |111000⟩
⇒
|000001⟩ + |001000⟩ + |010001⟩ + |011000⟩ + |100001⟩ + |101000⟩ + |110001⟩ + |111000⟩
⇒
|000001⟩ + |001100⟩ + |010001⟩ + |011100⟩ + |100001⟩ + |101100⟩ + |110001⟩ + |111100⟩

(|000001⟩ + |010001⟩ + |100001⟩ + |110001⟩) + (|001100⟩ + |011100⟩ + |101100⟩ + |111100⟩)

|000⟩ + |010⟩ + |100⟩ + |110⟩
|001⟩ + |011⟩ + |101⟩ + |111⟩

Symbolic Execution ?

• creates a unknown boolean variable

• We can compute symbolically, e.g.,

•

• Initial and final conditions will constrain the variable

H |0⟩

CX(a, b) = (a, a ⊕ b)

Example: symbolic execution
Factor 15 by computing period of 4x mod 15

|x2x1x0001⟩
⇐
|x2x1x0x001⟩
⇐
|x2x1x0x00x0⟩

Boundary conditions:

•
•
•

x0 = 0
0 = 0
x0 = 0

Input to QFT:

Period is 2

(even numbers)

x2x10

Retrodictive Classical Execution

Instead of conventional forward
execution:

• Run with one fixed input to
determine a possible value for
output register

• Run backwards with symbols for
input register

• Use initial conditions to constrain
symbolic values

Boolean + Fourier: Classic CS topic
Connections to learning; many roadblocks and open problems

Characterize H using
Categorical Semantics

Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

1

0

v = v + 1 mod 2

return (v,v)

{ return v if v = w
undefined otherwise

———————————————————————

Public state

inv copy (v,w)

{ false, true, not, copy, inv copy, …} Public interface

Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

0

1

v = v + 1 mod 2

return (v,v)

{ return v if v = w
undefined otherwise

———————————————————————

Public state

inv copy (v,w)

{ false, true, not, copy, inv copy, …} Public interface

Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

2

0

v = v + 2 mod 4

return (v,v)

{ return v if v = w
undefined otherwise

———————————————————————

Public state

inv copy(v,w)

{ false, true, not, copy, inv copy, …} Public interface

Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

|0⟩
v = Xv

return v ⊗ v

{ return v if v = w
undefined otherwise

|1⟩

———————————————————————

Public state

inv copy (v,w)

{ false, true, not, copy, inv copy, …} Public interface

Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

| + ⟩
v = Zv

return v ⊗ v

{ return v if v = w
undefined otherwise

| − ⟩

———————————————————————

Public state

inv copy (v,w)

{ false, true, not, copy, inv copy, …} Public interface

Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

0

1

v = v + 1 mod 2

return (v,0)

{ return v if v = w
undefined otherwise

———————————————————————

Public state

inv copy (v,w)

{ false, true, not, copy, inv copy, …} Public interface

Hidden Implementation must satisfy
Equations I

Equation II
Hidden Implementation must satisfy

It is Quantum !

Two instances of ADT Bool with unknown representation
but constrained to satisfy some equations

Bool_Z

Bool_X

Allow interleaving of the two languages

Hadamard from Square Roots

Clocked Digital Computation

• Simplified view of processor

• Clock defines smallest unit of time

• Every operation takes one or more clock cycle

• In particular, boolean negation takes one clock cycle

Half a clock cycle?

• What if we split the action of the NOT gate in two steps

• Some operations take a full clock cycle

• Some take half a clock cycle

• Allow asynchronous interleaving

Formally…
Take a reversible classical programming language, extend it with:

It’s Quantum again

Conclusions

Immediate Consequences

• Programming quantum computers can leverage a lot of the infrastructure of
classical programming

• Teaching quantum computing should be possible by appealing to just
classical notions

• Tantalizing connections to well-established to classical notions

• New CS perspectives

• Quantum advantage ???

Quantum Advantage?

Still no clue !

But:

 Ability to efficiently switch representation from Z-booleans to X-booleans
and back would be sufficient

Having multiple execution threads going at different speeds is known to
provide speedups

(Some of) The Details

The Algebraic Nature of CCX

• CCX operates on collections of booleans.

• What are ‘booleans’ ?

• What do we mean by ‘collections’ ?

Booleans represent Choices
• A boolean represents a choice between two atomic values

• Generalize to zero or more choices among arbitrary values

• 0 represents ‘no choice’ and + introduces a choice between two alternatives

•

• Choice is a commutative monoid

τ ::= 0 |τ + τ

Collections / Registers / Tuples / Records
• Collections represent one or more ‘thing’ next to each other

•

• Another commutative monoid

τ ::= 0 |τ + τ |1 |τ * τ

Distributivity !
• cake and (tea or coffee) (cake and tea) or (cake and coffee)

• cake or (tea and coffee) (cake or tea) and (cake or coffee)

• We get a commutative rig (ring without negatives)

=

≠

Put it all Together in Category Theory: Symmetric Rig Groupoid
A programming language and a logic for reasoning about programsΠ0 Π1

Programming in Π0

ctrl c = dist ; (id + id × c) ; factor

X = swap+

CX = ctrl X

CCX = ctrl CX

Reasoning in Π1

Meta-Theoretical Results

• Thm: is universal
for classical reversible
circuits.

• Thm: is sound and
complete with respect
to permutations on
finite sets

Π0

Π1

 andΠ
• For we use the symmetric rig groupoid of finite sets and bijections

• For we rotate the reference semantics by for some

• We still just have two individual copies of the classical reversible language

• In one copy, the “booleans” are the usual booleans

• In the other copy, the “booleans” have a non-standard representation but this
is completely invisible to the outside.

Π

ϕ

Π

Π

Π

What Happened?

• Each copy of internalizes a choice of basis

• Modulo global phase, the required equation forces one copy to use the Z basis
and the other copy to use the X basis

• Algebraic presentation of complementarity

• The move from one language to the other is Hadamard

• All of that is hidden

• What is exposed is two classical languages and one equation that governs their
interaction

Π

Reasoning

Recall: Symmetric Rig Groupoid
A programming language and a logic for reasoning about programsΠ0 Π1

Add two terms and three equations
It’s Quantum again!

