A Computer Science Perspective
on the
Foundations of Quantum Computing

Amr Sabry
Department of Computer Science

A few CS concepts
(to get in the right state of mind)

1979 ACM Turing Award Lecture

Delivered at ACM °79, Detroit, Oct. 29, 1979

Key CS Concept |

Notation as a Tool of Thought

Kenneth E. Iverson
IBM Thomas J. Watson Research Center

Notation

What is?
MCMLXXXII * DCCXIII

« Complexity of algorithms depends on the notation used

* Not to speak of readability, ease of understanding, maintainability, potential
for errors, etc.

MineCraft Logic Gates

rrrrrrrr

nput/Qutput Gate AND Gate OR Gate XOR Gate Rapid Pulser
— — O el o o Q
[- 5 I
NOT Gate e o -
[Inverter)
I _‘i l—) H — O T — O D] = -] v
RS NOR Latch
{Memocy Call) NAND Gate NOR Gate XNOR Gate
q O e o
) i 1
-) poy b—] l
n c O I n —. o T — O e 1 > !.
e o RS NAND Latch S.Clock
{Memory Cell) {Pulser)
1
o o - s
i 1
Repeater - 2 -

|
S
7 N\
S, pd
N———

: 0% #0)

C ()" Ok ()"

N\ % g

|
N
V)
|
(—

|
(-
N
- O O M

o O O -
o O = O

2. Solve the Equation of Motion where F = 0

Solve the equation of motion using dsolve in the case of no external f
the initial conditions of unit displacement and zero velocity.

Key CS Concept .

eq = subs(eq,F,0);
sol = dsolve(eq, cond)

Symbolic execution SR

e 27 (y +o01) ¢
201 201

1 61 =V —2wo) (v +2wo)
a * power a (n-1)

power a O
power a n

-— Normal execution
power 2 3 = 8

-— Symbolic execution / Partial evaluation
power a 3 = a * a * a * 1

orces where ' = (. Use

Bl Get ~

Key Concept IV

Encapsulation; Representation Independence

Match the characters in the picture Help

To continue, type the characters you see in the picture. Why? A

0305 |3

The picture contains 8 characters.

client

public

f7ff9e8b7b
b2e09b709
35a5d785e
0Occ5d9d0a

Characters: Plaintext Hash Function Hashed Text
) Select all squares with
__ Continue traffic lights
n If there are none, click skip
AMAZON / TECH / ARTIFICIAL INTELLIGENCE
- - . I'm not a robot
Amazon insists Just Walk Out isn’t CAPTCHA
secretly run by workers watching you ke - T
shop
aqmw . | | / Amazon says human reviewers
X PE}P only annotate shopping data for
R T W -'& Its cashierless tech.
9y B 0 qx

Algorithm Time Complexity Space Complexity

Key CS Concept V] ot | ot | ot | o
y : eS| on | o | o | o

Complexity Bounds pRsnss] on | o | o | o

o i e on

» Sorting a deck of 52 cards: S o Obsmh | 0% | ow
o e e o

* Find the Ace of spades, put it in position 1 (GesS opw | onew | o) | o
R

» Find the King of spades, put it in position 2
- Find the Queen of spaces, put it in position 3

» Worst-case complexity: 52 + 51 + 50 + ... = 1378 comparisons

. If deck had N cards, O(N?)

Quantum Sorting

Theorem 2. Any comparison-based quantum algorithm for sorting that errs
with probability at most € > 0 requires at least

(1-2v/eT=9) 5 1y - ®)

comparisons. In particular, any exact quantum algorithm requires more than
> (In(N) — 1) ~ 0.110N log, N comparisons.

» Quantum advantage for sorting?

» Absolutely not

- There exist other classical sorting algorithms with O(NlogN) complexity

Integer Factorization

» When the numbers are sufficiently large, no efficient non-quantum integer
factorization algorithm is known.

* However, it has not been proven that such an algorithm does not exist.

B
Current Status A
C/ {TJJIR RIEINIT!
S

It has been 42 years since Feynman envisioned the use of quantum devices to
efficiently simulate physics.

It has been 27 years since Shor developed a quantum polynomial-time prime
factorization algorithm.

Despite impressive technological advances in the design and realization of
quantum devices, there is yet not a single conclusive demonstration of a
computational guantum advantage.

Why CS Perspective?

 Pragmatic: Reuse huge computational infrastructure to perform simulations,
experiments, explore algorithms, and develop applications.

 Foundational: Examine the boundary between classical and quantum computing to
gain insights about potential sources of qguantum advantage

* Retrospective: As early as 1992, some CS researchers predicted “a physics
revolution is brewing in CS.” Anytime now 777

Everything can be encoded using
Toffoll and Hadamard

Formal Result

Theorem 1 (Shi / Aharonov).

The set consisting of just the Toffolt and
Hadamard gates 1s computationally universal

for quantum computing.

By computationally universal, we mean the set
can stmulate, to within e-error, an arbitrary quan-
tum circutt of n qubits and t gates with only poly-
logarithmic overhead in (n,t,1/€).

The Hadamard Mystery

Hadamard
(H)

An Approximate Fourier Transform Useful in Quantum Factoring

Hadamard ~ QFT

We define an approximate version of the Fourier transform on 2**L elements, which is computationally attractive in a certain setting, and which may find application to
the problem of factoring integers with a quantum computer as is currently under investigation by Peter Shor.

By: Don Coppersmith

Published in: RC19642 in 1996

Focus on the Essence

* The Toffoli gate (CCX) is just a reference to (reversible) classical computing.
Easy!

 The Hadamard gate (H) is a reference to any or all of the following:
* the (Qquantum) Fourier transform,
* a change of basis (from Z basis to X basis and back),
* a square root of the boolean negation gate (the X gate)

e or perhaps another perspective?

o Start with a “good” model of reversible classical computing

 Explore ways to express Hadamard-like functionality

Textbook Quantum Algorithms

Circuits for Hidden Subgroup Problems

Class includes Deutsch-Jdozsa, Bernstein-Vazirani, Simon, Grover

and Shor algorithms

0)°" ———

2m—1

H@n

1
m Z Xy |y> o
Vo £

 Hadamard only after initialization

» Hadamard on |0) only

 QFT (generalized Hadamard) only before measurement

[QFT

—ly flz)@y[

1

How Hadamard is actually used

e After initialization to introduce a uniform superposition
 Before measurement to extract spectral properties

e No uses of Hadamard in the middle !

xo=0) 4 H X

x1=10) 4 H QFT H~—*

Example =1 A}y z
Factor 15 by computing period of 4* mod 15 Zi i Zi
0) O— 7 F—

1000000) + |001000) + [010000) + |011000) + | 100000) + | 101000) + | 110000) + | 111000}

=
1000001) + |001000) + |010001) + |011000) + | 100001} + | 101000) + | 110001} + | 111000)

=
1000001) + |001100) + [010001) + [011100) + | 100001) + | 101100) + | 110001) + | 111100}

(1000001) + |010001) + | 100001) + | 110001)) + (|001100) + |011100) + | 101100) + | 111100))

Bottom 3 qubits can be measured as:
001 so input to QFT = |000) + [010) + | 100) + [110) (period = 2)
100 so inputto QFT = |001) + |O11) + [101) + |111) (period = 2)

Symbolic Execution ?

« H|0) creates a unknown boolean variable

 We can compute symbolically, e.g.,
e CX(a,b) = (a,a & b)

e |nitial and final conditions will constrain the variable

v

Example: symbolic execution x-o-

OFT

NN

Factor 15 by computing period of 4* mod 15 YT é

0) €
0) —
0) ———{~
| X%,x,x,001) Boundary conditions: Input to QFT:
N 0
| X5 % x01) +Xo =0 A2
N =0 Period is 2
eriod is
[20501 X0 %00) + X =0 (even numbers)

Retrodiction Prediction

Gt TN TN
Retrodictive Classical Execution *$_ o bl
@ @' t '| ' J tr
Instead of conventional forward & & e
execution: v v M
0)°" {Ho" iy — —{QFT | =
* Run with one fixed input to 7S
determine a possible value for - A A T e T
output register 5 5 5
(a) Conventional Flow
* Run backwards with symbols for e o e
input register N N N
0)°" {H®"] — —{OFT | =

 Use initial conditions to constrain ‘ar il :
symbolic values e .' =

(b) Retrodictive Flow

> runRetroShor Nothing (Just 4) (Just 1) 15
n=8; a=4

Generalized Toffoli Gates with 3 controls
Generalized Toffoli Gates with 2 controls
Generalized Toffoli Gates with 1 controls

1 & Xe =1
Xoe = 0

> runRetroShor Nothing Nothing (Just 1) 15
n=8; a=11

Generalized Toffoli Gates with 3 controls
Generalized Toffolli Gates with 2 controls
Generalized Toffoli Gates with 1 controls

X0
X0

0
0

> runRetroShor Nothing Nothing (Just 1) 51
n=12; a=37

8788
86866
81796

Generalized Toffoli Gates with 3 controls
Generalized Toffoli Gates with 2 controls
Generalized Toffoli Gates with 1 controls

1 ® Xo ® X2 ® X1X2 ® XeX1X2 ® X3 XoX3 & X1X3 ®&@ XoeX1X3 & XeX2X3 & XeXi1X2X3 =
X1 ® XeX2 ® X1X2 ® X1X3 ® XoeX1X3 XeX1X2X3 = 0

XeX1 ® X2 X1X2 ® XoX3 ® XoeX1Xs3)

Xo ® XoX2 X1X2 ® XoeX1X3 ® X2X3 ® Xi1X2X3 = 0

X1 & XeX1 XoX1X2 & X3 & X1X3 & XoeX1X3 & X2X3 & XeX1X2X3 =

Xo ® XoX2 XoX3 ® X1X3 ® XeX1X3 ® XeX2X3 ® XeX1X2X3 = 0

Boolean + Fourier: Classic CS topic

Connections to learning; many roadblocks and open problems

CSE 291 - Fourier analysis of boolean functions
(Winter 2017)

Time: Mondays & Wednesdays 5:00-6:20pm COMP 760 (Fall 2011): Harmonic Analysis of

Room: CSE (EBU3B) 4258 B l F °
Instructor: Shachar Lovett, email: slovett@ucsd.edu ooican unCtlonS
Overview: Instructor's contact: See Here

Lectures: MW 11:35-12:55 in McConnell Engineering Building 103 (Starting from
tomorrow, Wednesday, the class 1s 11:35-12:55)
Office Hours: By appointment (hatami at cs mcgill ca)

Fourier analysis is a powerful tool used to study boolean f
applications in computer science, for example in learning theor
cryptography, complexity theory and more. This class will
mathematical background, as well as explore many applications.

Course description:

This course is intended for graduate students in theoretical computer science or mathematics. Its
purpose is to study Boolean functions via Fourier analytic tools. This analytic approach plays an
essential role in modern theoretical computer science and combinatorics (€.g. in circuit complexity,
hardness of approximation, machine learning, communication complexity, graph theory), and it is
the key to understanding many fundamental concepts such as pseudo-randomness.

Characterize H using
Categorical Semantics

Abstract Data Type: Bool

Public state v = false
Public interface { false, true, not, copy, inv copy, ...}

Hidden representation

true 1

false 0
not v=V+1mod?2
copy return (v,v)

iInv copy (v,w)

{ return v ifv=w
undefined otherwise

Abstract Data Type: Bool

Public state v = false
Public interface { false, true, not, copy, inv copy, ...}

Hidden representation

true 0

false 1

not V=V +1mod?2
copy return (v,v)

iInv copy (v,w)

{ return v ifv=w
undefined otherwise

Abstract Data Type: Bool

Public state v = false
Public interface { false, true, not, copy, inv copy, ...}

Hidden representation

true 2

false 0

not V=V+2mod4
copy return (v,v)

iInv copy(v,w)

{ return v ifv=w
undefined otherwise

Abstract Data Type: Bool

Public state v = false
Public interface { false, true, not, copy, inv copy, ...}

Hidden representation

true [1)

false 10)

not vV =XV

COopy return v @ v

{ return v ifv=w

inv copy (v,w) undefined otherwise

Abstract Data Type: Bool

Public state v = false
Public interface { false, true, not, copy, inv copy, ...}

Hidden representation

true | =)

false | +)

not V=2V

COopy return v @ v

{ return v ifv=w
undefined otherwise

iInv copy (v,w)

gstract Data Type: Boc

Public state
Public interface

Hidden representatiC

true

false

not

COpy

fv=w
ned otherwise

iInv copy (v,w

Hidden Implementation must satisfy

Equations |

CopY

copy »

inv copy,

copy

CoOpy

copy

\,/

copyz
inv copy,
Copyz

G

CopYz
inv copy,
CopY 7

Hidden Implementation must satisfy
Equation li

Inv copys

wopyz

CoOpYx

Vanishing Point

It is Quantum !

TueEOREM 27 (CANONICITY). If a categorical semantics |[—] for (II<>) in Contraction satisfies the
classical structure laws and the execution laws (defined in Prop. 24) and the complementarity law
(Def. 26), then it must be the semantics of Sec. 7.3 with the semantics of x4 being the Hadamard gate
and:

[copyz]: 1i) & lid) [zero] = 10)
[copys]: |£) o |£+) lassertZero| = (0|

Two instances of ADT Bool with unknown representation
but constrained to satisfy some equations

Allow interleaving of the two languages

Bool Z

Bool X

Hadamard from Square Roots

Clocked Digital Computation

tf = Fall transition time

o Simplified view of processor
e Clock defines smallest unit of time
* Every operation takes one or more clock cycle

* |n particular, boolean negation takes one clock cycle

Programming Models

[I Synchronous model

Half a clock cycle?

time

time

Threaded model

time | Asynchronous model

lask 1 lask 2 lask 3

 What if we split the action of the NOT gate in two steps
e Some operations take a full clock cycle
 Some take half a clock cycle

* Allow asynchronous interleaving

Formally...

Take a reversible classical programming language, extend it with:

Syntax
isou=---|Vv|VvI|wW|WI (isomorphisms)
Types
v @ 2 o 2 : VI
w 1 & 1 @ wi
Equations

(El) Vz 9 X
(E2) w® &5 1
(E3) v ¢ (id+W?) g v &y uniti*l 3 w? X ((id +w?) g v 9 (id +w?)) ¢ unite*l

It’'s Quantum again

Definition of the Quantum Model. The model consists of a rig groupoid (C, ®, ®, O, I) equipped
withmapsw: I - ITand V: I ® 1 — I @ I satisfying the equations:

(E1) w® =id (E2) V? = 05 (E3) VoSoV=w*eSoVoS$S

where o is sequential composition, e is scalar multiplication (cf. Def. 4), o4 is the symmetry on I &1,
exponents are iterated sequential compositions, and S: I ® I — I & I is defined as S = id ® w?.

THEOREM 25 (FULL ABSTRACTION FOR GAUSSIAN CLIFFORD+T CIRCUITS). Let ¢; and cy be VII
terms representing Gaussian Clifford+T circuits. Then [c1] = [c2] iff (c1) = (c2).

Conclusions

Immediate Consequences

 Programming quantum computers can leverage a lot of the infrastructure of
classical programming

* [eaching quantum computing should be possible by appealing to just
classical notions

» [antalizing connections to well-established to classical notions

* New CS perspectives

e Quantum advantage ??7?

nature

Explc

PRX QUANTUM

e 2 FPhysical Review journal

et Highlights Recent Accepted Authors Referees Search About Scope Editorial Team

[
Evi
fa

voune Efficient Tensor Network Simulation of IBM's Eagle Kicked Ising
oser | EXPEriment

Joseph Tindall, Matthew Fishman, E. Miles Stoudenmire, and Dries Sels
gt PRX Quantum 5, 010308 — Published 23 January 2024

126k

Ph)/STCS See Research News: A Moving Target for Quantum Advantage

nature

Explore content v About the journal v Publish with us v
memmmm RESEARCH-ARTICLE FREE ACCESS :
X in& f

=t Closing the "quantum supremacy" gap: achieving real-time
»i Simulation of a random quantum circuit using a new

Q Sunway supercomputer

SU

Authors: Yong (Alexander) Liu, Xin (Lucy) Liu, Fang (Nancy)_Li, Haohuan Fu, Yuling Yang, Jiawei Song,
i Pengpeng Zhao, Zhen Wang, Dajia Peng, Huarong Chen, Chu Guo, Heliang Huang, + 2
Rok Authors Info & Claims
[o]

SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Nat Analysis e November 2021 e Article No.: 3 e Pages 1-12 e https://doi.org/10.1145/3458817.3487399

Published: 13 November 2021 Publication History W) Check for updates |

Another. =
Quantum

L

; 5]
‘\ . \
ot ® o
. e 2 o
v . — .

A Van tage 14 7

3 (' u'v"/"

] 2

[7 74 ‘(
‘ % ¥ % i ‘

Quantum Advantage?

SCIENCE NEWS

Still no clue !
But:

B Ability to efficiently switch representation from Z-booleans to X-booleans
and back would be sufficient

BHaving multiple execution threads going at different speeds is known to
provide speedups

(Some of) The Details

The Algebraic Nature of CCX

 CCX operates on collections of booleans.
 What are ‘booleans’ ?

 What do we mean by ‘collections’ ?

Booleans represent Choices

* A boolean represents a choice between two atomic values

» (Generalize to zero or more choices among arbitrary values

* 0 represents ‘no choice’ and + introduces a choice between two alternatives
e 7::=0|7t4+7

 Choice is a commutative monoid

y

12 + T1
T1 + (T2 + T3)

T + 0

T1 + T2
T1 + (T2 + T3)

Collections / Registers / Tuples / Records
* Collections represent one or more ‘thing’ next to each other
e 7:=0|z+7|l|7%7

e Another commutative monoid

ekl
T1 Xk T2

.
T2 X T1
T1 * (T2 * T3)

T1 * (T2 * T3)

Distributivity !

 cake and (tea or coffee) = (cake and tea) or (cake and coffee)

» cake or (tea and coffee) * (cake or tea) and (cake or coffee)

 We get a commutative rig (ring without negatives)

T % 0 0
T x (t1 + T2) (Tt *x T1) + (T % T2)

T + 1 1
e (e ok o) 2 e e L kL e)

Put it all Together in Category Theory: Symmetric Rig Groupoid

A programming language 11, and a logic 11, for reasoning about programs

id b & b . id
SWCIP+ : bl + bz bz + bl : swap+
assocrt : (by+by))+bs < by + (by+b3) . assocl”
unite™l 0+b & b . unititl
swapx . bl X bz > bz X bl : swapx
assocr* : (by Xby)Xb; & by X (by X bs3) . assocl”
unite*l 1Xb < b . uniti®l

dist (bl + bz) X bg g (bl X bg) + (bz X bg) : factor
absorbl bx0 & 0 . factorzr
ci1:by &by ¢y :by & b3 c:b; o b,
01802:b1<—)b3 invc:bz<—>b1
Cltbl(—>b3 Cztbz(—>b4 Cltb1<—>b3 CztszbL}

Cl+02:b1+b2<—>b3+b4 01X022b1>(b2<—>b3><b4

Programming in [],

ctrl c = dist ; (id+id X c¢) ; factor

_ +
X=swap F] W
| N
CX = ctrl X | 4 N
‘{ISt + fact/Qr
CCX = ctrl CX T\'\'_iswaer‘_‘/‘/qT

negi negz2 negs negs negs : BOOL — BOOL

| | nega sSwap+
Reasoning In [1, [EEEsEs
]_ negs swap+ ©® swap+ ® swap-+
swap+ ©® 1de—

uniti*l @ swap* ® (swap+ ® id—) @ swap* ® unite*1l
uniti*r ® (swap+ {ONE} {ONE} ® i1d—) ® unite*r

nega
negs
Nnege

negkEx : negs ¢ neg:
negEx = (uniti*l ® (swap* ® ((swap+ ® id—) ® (swap* ® unitexl))))

o(1de assocel)

(uniti+1 ((swap* ® (swap+ @ 1id—)) ® (swap* ® unite*1l)))
»(ide @ (swapl*e @ ide))

(uniti~1 (((id—® swap+) ® swap*) ® (swap* ® unite+l)))
o(1de assocer)

(uniti~1 ((id—® swap+) ® (swap* ® (swap* @ unite*1l))))
o ide (ide @ assocel))

(uniti+1 ((id—e® swap+) ® ((swap* @ swap*) ® unite*1l)))
o ide (ide @ (linvel @ ide)))

(uniti~1l ((id—@ swap+) ® (1d—® unite+l)))
o ide (ide @ idlel))

(uniti*l @ ((id—® swap:) ® unite+*1l))
«(assocel)

((uniti*l ® (id—® swap:)) ® unite*1)
o unitil+*«l @ ide)

((swap+ ® uniti*l) ® unite+1)
«»(assocer)

(swap+ ® (uniti*l ® unite+1))
o(ide @ linvel)

(swap+ ® id-)
o(1drel)

swap+ B

0O I O IO N O BN O RN O B O NN O B O B O

Meta-Theoretical Results

« Thm: 11 is universal

for classical reversible I s > B -

circuits.

» Thm: I, is sound and
complete with respect

to permutations on
finite sets %

ITand <

» For Il we use the symmetric rig groupoid of finite sets and bijections

cos¢ —sing
sing cos¢

 For <> we rotate the reference semantics by () for some ¢

» We still just have two individual copies of the classical reversible language 11
* |n one copy, the “booleans” are the usual booleans

* |In the other copy, the “booleans™ have a non-standard representation but this
Is completely invisible to the outside.

What Happened?

« Each copy of 11 internalizes a choice of basis

 Modulo global phase, the required equation forces one copy to use the Z basis
and the other copy to use the X basis

* Algebraic presentation of complementarity
 The move from one language to the other is Hadamard

 All of that Is hidden

 What is exposed is two classical languages and one equation that governs their
iInteraction

minusZ=plus : (minus >>> Z) = plus
minusZ=plus = begin
(minus >>> 7)
=(id=)
((plus >>> H >>> X >>> H) >>> H >>> X >>> H)
={ ((assoc>>>1 O assoc>>>1) »3{id) © pull” assoc>>>1)
(((plus >>> H) >>> X) >>> (H >>> H) >>> X >>> H)
=(1d)§{ ((hadInv >§{id) © id1>>>1))
(((plus >>> H) >>> X) >>> X >>> H)
=(pull” assoc>>>1)
((plus >>> H) >>> (X >>> X) >>> H)
=(1d)${ (xInv >§{id © idl>>>1))
((plus >>> H) >>> H)
={ cancel” hadInv)
plus W

Reasoning

Recall: Symmetric Rig Groupoid

A programming language 11, and a logic 11, for reasoning about programs

id b & b . id
SWCIP+ : bl + bz bz + bl : swap+
assocrt : (by+by))+bs < by + (by+b3) . assocl”
unite™l 0+b & b . unititl
swapx . bl X bz > bz X bl : swapx
assocr* : (by Xby)Xb; & by X (by X bs3) . assocl”
unite*l 1Xb < b . uniti®l

dist (bl + bz) X bg g (bl X bg) + (bz X bg) : factor
absorbl bx0 & 0 . factorzr
ci1:by &by ¢y :by & b3 c:b; o b,
01802:b1<—)b3 invc:bz<—>b1
Cltbl(—>b3 Cztbz(—>b4 Cltb1<—>b3 CztszbL}

Cl+02:b1+b2<—>b3+b4 01X022b1>(b2<—>b3><b4

Add two terms and three equations

It’s Quantum again!

Syntax
isou=---|Vv|VvI|wW|WI (isomorphisms)
Types
v @ 2 o 2 : VI
w 1 & 1 @ wi
Equations

(El) Vz 9 X
(E2) w® &5 1
(E3) v ¢ (id+W?) g v &y uniti*l 3 w? X ((id +w?) g v 9 (id +w?)) ¢ unite*l

