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A few CS concepts 
(to get in the right state of mind)



Key CS Concept I
Notation

What is?


MCMLXXXIII * DCCXIII


• Complexity of algorithms depends on the notation used


• Not to speak of readability, ease of understanding, maintainability, potential 
for errors, etc.



Key CS Concept II
Encoding

Example: complex numbers “uninteresting” as they can be efficiently encoded




Key CS Concept III
Symbolic execution



Key Concept IV
Encapsulation; Representation Independence



Key CS Concept V
Complexity Bounds

• Sorting a deck of 52 cards:


• Find the Ace of spades, put it in position 1


• Find the King of spades, put it in position 2


• Find the Queen of spaces, put it in position 3


• Worst-case complexity: 52 + 51 + 50 + … = 1378 comparisons


• If deck had  cards, O( )N N2



Quantum Sorting

• Quantum advantage for sorting? 


• Absolutely not


• There exist other classical sorting algorithms with O( ) complexityNlogN



Integer Factorization

• When the numbers are sufficiently large, no efficient non-quantum integer  
factorization algorithm is known. 


• However, it has not been proven that such an algorithm does not exist. 




Current Status  

It has been 42 years since Feynman envisioned the use of quantum devices to 
efficiently simulate physics.  

It has been 27 years since Shor developed a quantum polynomial-time prime 
factorization algorithm.  

Despite impressive technological advances in the design and realization of 
quantum devices, there is yet not a single conclusive demonstration of a 
computational quantum advantage.  



Why CS Perspective?

• Pragmatic: Reuse huge computational infrastructure to perform simulations, 
experiments, explore algorithms, and develop applications. 


• Foundational: Examine the boundary between classical and quantum computing to 
gain insights about potential sources of quantum advantage


• Retrospective: As early as 1992, some CS researchers predicted “a physics 
revolution is brewing in CS.” Anytime now ???



Everything can be encoded using 
Toffoli and Hadamard



Formal Result 



The Hadamard Mystery 

Toffoli 
(CCX)

Hadamard 
(H)

One conclusion:  

The difference is all about 
Hadamard  

Or if you prefer: 

It’s all about QFT (the Quantum 
Fourier Transform)

Hadamard  QFT
≃



Focus on the Essence

• The Toffoli gate (CCX) is just a reference to (reversible) classical computing. 
Easy!


• The Hadamard gate (H) is a reference to any or all of the following:


• the (quantum) Fourier transform, 


• a change of basis (from Z basis to X basis and back), 


• a square root of the boolean negation gate (the X gate) 


• or perhaps another perspective?



Plan

• Start with a “good” model of reversible classical computing


• Explore ways to express Hadamard-like functionality



Textbook Quantum Algorithms



Circuits for Hidden Subgroup Problems
Class includes Deutsch-Jozsa, Bernstein-Vazirani, Simon, Grover 

and Shor algorithms 

• Hadamard only after initialization

• Hadamard on  only

• QFT (generalized Hadamard) only before measurement

|0⟩



How Hadamard is actually used

• After initialization to introduce a uniform superposition


• Before measurement to extract spectral properties


• No uses of Hadamard in the middle !



Example
Factor 15 by computing period of 4x mod 15

 






= 




Bottom 3 qubits can be measured as:

001 so input to QFT =        (period = 2)

100 so input to QFT =        (period = 2)


|000000⟩ + |001000⟩ + |010000⟩ + |011000⟩ + |100000⟩ + |101000⟩ + |110000⟩ + |111000⟩
⇒
|000001⟩ + |001000⟩ + |010001⟩ + |011000⟩ + |100001⟩ + |101000⟩ + |110001⟩ + |111000⟩
⇒
|000001⟩ + |001100⟩ + |010001⟩ + |011100⟩ + |100001⟩ + |101100⟩ + |110001⟩ + |111100⟩

( |000001⟩ + |010001⟩ + |100001⟩ + |110001⟩) + ( |001100⟩ + |011100⟩ + |101100⟩ + |111100⟩)

|000⟩ + |010⟩ + |100⟩ + |110⟩
|001⟩ + |011⟩ + |101⟩ + |111⟩



Symbolic Execution ?

•  creates a unknown boolean variable


• We can compute symbolically, e.g., 


• 


• Initial and final conditions will constrain the variable

H |0⟩

CX(a, b) = (a, a ⊕ b)



Example: symbolic execution
Factor 15 by computing period of 4x mod 15














|x2x1x0001⟩
⇐
|x2x1x0x001⟩
⇐
|x2x1x0x00x0⟩

Boundary conditions:


•  
•  
• 

x0 = 0
0 = 0
x0 = 0

Input to QFT:





Period is 2

(even numbers)


x2x10



Retrodictive Classical Execution

Instead of conventional forward 
execution:


• Run with one fixed input to 
determine a possible value for 
output register


• Run backwards with symbols for 
input register


• Use initial conditions to constrain 
symbolic values





Boolean + Fourier: Classic CS topic
Connections to learning; many roadblocks and open problems



Characterize H using 
Categorical Semantics



Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

1

0

v = v + 1 mod 2

return (v,v)


{ return v if v = w
undefined otherwise

———————————————————————

Public state

inv copy (v,w)

{ false, true, not, copy, inv copy, …} Public interface



Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

0

1

v = v + 1 mod 2

return (v,v)


{ return v if v = w
undefined otherwise

———————————————————————

Public state

inv copy (v,w)

{ false, true, not, copy, inv copy, …} Public interface



Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

2

0

v = v + 2 mod 4

return (v,v)


{ return v if v = w
undefined otherwise

———————————————————————

Public state

inv copy(v,w)

{ false, true, not, copy, inv copy, …} Public interface



Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

|0⟩
v = Xv

return v ⊗ v


{ return v if v = w
undefined otherwise

|1⟩

———————————————————————

Public state

inv copy (v,w)

{ false, true, not, copy, inv copy, …} Public interface



Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

| + ⟩
v = Zv

return v ⊗ v


{ return v if v = w
undefined otherwise

| − ⟩

———————————————————————

Public state

inv copy (v,w)

{ false, true, not, copy, inv copy, …} Public interface



Abstract Data Type: Bool

Hidden representation

false

true

not

copy

…

v = false

0

1

v = v + 1 mod 2

return (v,0)


{ return v if v = w
undefined otherwise

———————————————————————

Public state

inv copy (v,w)

{ false, true, not, copy, inv copy, …} Public interface



Hidden Implementation must satisfy
Equations I



Equation II
Hidden Implementation must satisfy



It is Quantum ! 



Two instances of ADT Bool with unknown representation 
but constrained to satisfy some equations

Bool_Z

Bool_X

Allow interleaving of the two languages



Hadamard from Square Roots



Clocked Digital Computation

• Simplified view of processor


• Clock defines smallest unit of time


• Every operation takes one or more clock cycle


• In particular, boolean negation takes one clock cycle



Half a clock cycle?

• What if we split the action of the NOT gate in two steps


• Some operations take a full clock cycle


• Some take half a clock cycle


• Allow asynchronous interleaving



Formally…
Take a reversible classical programming language, extend it with:



It’s Quantum again



Conclusions



Immediate Consequences

• Programming quantum computers can leverage a lot of the infrastructure of 
classical programming


• Teaching quantum computing should be possible by appealing to just 
classical notions 


• Tantalizing connections to well-established to classical notions


• New CS perspectives


• Quantum advantage ???







Quantum Advantage?

Still no clue !


But:


 Ability to efficiently switch representation from Z-booleans to X-booleans 
and back would be sufficient


Having multiple execution threads going at different speeds is known to 
provide speedups





(Some of) The Details



The Algebraic Nature of CCX

• CCX operates on collections of booleans. 


• What are ‘booleans’ ? 


• What do we mean by ‘collections’ ? 



Booleans represent Choices
• A boolean represents a choice between two atomic values


• Generalize to zero or more choices among arbitrary values


• 0 represents ‘no choice’ and + introduces a choice between two alternatives


• 


• Choice is a commutative monoid

τ ::= 0 |τ + τ



Collections / Registers / Tuples / Records
• Collections represent one or more ‘thing’ next to each other


• 


• Another commutative monoid

τ ::= 0 |τ + τ |1 |τ * τ



Distributivity !
• cake and (tea or coffee)  (cake and tea) or (cake and coffee)


• cake or (tea and coffee)  (cake or tea) and (cake or coffee)


• We get a commutative rig (ring without negatives)

=

≠



Put it all Together in Category Theory: Symmetric Rig Groupoid 
A programming language  and a logic  for reasoning about programsΠ0 Π1



Programming in Π0










ctrl c = dist ; (id + id × c) ; factor

X = swap+

CX = ctrl X

CCX = ctrl CX



Reasoning in Π1



Meta-Theoretical Results

• Thm:  is universal 
for classical reversible 
circuits.


• Thm:  is sound and 
complete with respect 
to permutations on 
finite sets

Π0

Π1



 andΠ
• For  we use the symmetric rig groupoid of finite sets and bijections


• For       we rotate the reference semantics by                      for some 


• We still just have two individual copies of the classical reversible language 


• In one copy, the “booleans” are the usual booleans 


• In the other copy, the “booleans” have a non-standard representation but this 
is completely invisible to the outside. 

Π

ϕ

Π

Π

Π



What Happened? 

• Each copy of  internalizes a choice of basis


• Modulo global phase, the required equation forces one copy to use the Z basis 
and the other copy to use the X basis


• Algebraic presentation of complementarity


• The move from one language to the other is Hadamard


• All of that is hidden


• What is exposed is two classical languages and one equation that governs their 
interaction

Π



Reasoning 



Recall: Symmetric Rig Groupoid 
A programming language  and a logic  for reasoning about programsΠ0 Π1



Add two terms and three equations
It’s Quantum again!


