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Abstract—We contribute a general apparatus for dependent
tactic-based proof refinement in the LCF tradition, in which the
statements of subgoals may express a dependency on the proofs of
other subgoals; this form of dependency is extremely useful and
can serve as an algorithmic alternative to extensions of LCF based
on non-local instantiation of schematic variables. Additionally,
we introduce a novel behavioral distinction between refinement
rules and tactics based on naturality. Our framework, called
Dependent LCF, is already deployed in the nascent RedPRL
proof assistant for computational cubical type theory.

I. INTRODUCTION

Interactive proof assistants are at their most basic level
organized around some form of proof refinement apparatus,
which defines the valid transitions between partial constructions,
and induces a notion of proof tactic. The proof refinement
tradition begins with Milner et al.’s Logic for Computable
Functions [1], [2] and was further developed in Cambridge
LCF, HOL and Isabelle [3], as well as the Nuprl family [4],
[5], [6]; tactic-based proof refinement is also used in the highly
successful Coq proof assistant [7] as well as the new Lean
theorem prover [8].

Notation I.1. Throughout this paper, we employ a notational
scheme where the active elements of mathematical statements
or judgments are colored according to their mode, i.e. whether
they represent inputs to a mathematical construction or outputs.
Terms in input-mode are colored with blue, whereas terms in
output-mode are colored with maroon.

A. Proof refinement and evidence semantics
At the heart of LCF-style proof refinement is the coding of

the inference rules of a formal logic into partial functions which
take a conclusion and return a collection of premises (subgoals);
this is called backward inference. Often, this collection of
subgoals is equipped with a validation, a function that converts
evidence of the premises into evidence of the conclusion (which
is called forward inference).

An elementary example of the LCF coding of inference rules
can be found in the right rule for conjunction in an intuitionistic
sequent calculus:

D
Γ ` P

E
Γ ` Q

Γ ` P ∧Q
∧R

O∣∣∣∣∣∣ Γ ` A∧ B Z⇒ 〈
[Γ ` A, Γ ` B],
λ[D, E ]. ∧R(D, E)

〉
Z⇒ raise Fail

In the example above, the validation produces exactly a
proof of Γ ` A∧ B in the intuitionistic sequent calculus, but
in general it is not necessary for the meaning of the validations
to correspond exactly with formal proofs in the logic being
modeled.

In both Edinburgh LCF and Cambridge LCF, the implemen-
tation of a proof refinement logic was split between a trusted
kernel which implemented forward inference, and a separate
module which implemented backward inference (refinement)
using the forward inference rules as validations [9]. Under this
paradigm, every inference rule must be implemented twice,
once in each direction.

This approach of duplicating formal rules in forward and
backward inference is a particular characteristic of the LCF
revolution as it actually occurred, rather than a universal prin-
ciple which is to be applied dogmatically in every application
of the LCF methodology. On the contrary, it is possible to
view a collection of backward inference (refinement) rules
as definitive in its own right, independent of any forward
inference characterization of a logic; this insight, first achieved
in the Nuprl proof assistant [4], enables a sharp distinction
between formal proof and evidence (the former corresponding
to derivations and the latter corresponding to realizers).

For instance, in the Nuprl family of proof assistants, the
refinement logic is a formal sequent calculus for a variant
of Martin-Löf’s type theory (see [10]), but the validations
produce programs in an untyped language of realizers with
computational effects [11]. Validations, rather than duplicating
the existing refinement rules in forward inference, form the
“program extraction” mechanism in Nuprl; this deep integration
of extraction into the refinement logic lies in stark contrast
with the purely extra-theoretic treatments of program extraction
in other proof assistants, such as Coq and Agda.

The ability for the notion of evidence to vary independently
from the notion of formal proof is a major strength of the LCF
design: the latter is defined by the assignment of premises to
conclusions in trusted refinement rules, whereas the former is
defined in the validations of these rules.

Constable first made precise this idea under the name of
computational evidence semantics [12], [13]. In practice, this
technique of separating the proof theory from the evidence
semantics can be used to induce (sub)structural and behavioral
invariants in programs from arbitrary languages as they
already exist, regardless of whether these languages possess a
sufficiently “proof-theoretic” character (embodied, for instance,
in the much acclaimed “decidable typing” property).

This basic asymmetry between proof and computational



evidence in refinement logics corresponds closely with the
origin of the sequent calculus, which was designed as a theory
of derivability for natural deduction. More generally, it reflects
the distinction between the demonstration of a judgment and
the construction it effects [14], [15].

B. Dependency or barbarism!

An apparently essential part of the LCF apparatus is that
each subgoal may be stated independently of evidence for
the others; this characteristic, originally identified as part
of the constructible subgoals property by Harper in his
dissertation [16], allows proof refinement to proceed in parallel
and in any order.

This restriction, however, raises difficulties in the definition
of a refinement logic for dependent type theory, where
the statement of one subgoal may depend on the evidence
for another subgoal (a state of affairs induced by families
of propositions which are indexed in proofs other another
proposition). The most salient example of this problem is
given by the introduction rule for the dependent sum of a
family of types [16, p. 35]. First, consider the standard type
membership rules, which pose no problem:

M ∈ A N ∈ B[M]

〈M,N〉 ∈ (x : A)× B[x]
×=

I

The premises can be stated purely on the basis of the
conclusion, because M appears in the statement of the
conclusion. However, if we try to convert this to a refinement
rule, in which we do not have to specify the exact member
〈M,N〉 in advance, we immediately run into trouble:

M
A true

N
B[M] true

〈M,N〉
(x : A)× B[x] true

×R

Suspending for the moment one’s suspicions about the above
notation, the fundamental problem is that this inference rule
cannot be translated into an LCF rule, because the subgoal
B[M] true cannot even be stated until it is known what M is,
i.e. until we have somehow run the validation for the completed
proof of the first subgoal.

To paraphrase the immortal words of the German revolution-
ary Rosa Luxemburg, we stand at a crossroads: either we shall
account for dependency, or we must regress into barbarism.

1) Ignore the problem!: The resolution adopted by the first
several members of the Nuprl family was to defer the solution
of this problem to a later year, thereby requiring that the user
solve the first subgoal in advance of applying the introduction
rule. This amounted to defining a countable family of rules
×R{M}, with the term M a parameter:

∗
M ∈ A

N
B[M] true

〈M,N〉
(x : A)× B[x] true

×R{M}

The subgoals of the above rule are independent of each other,
and it can therefore easily be coded as an LCF rule. However,
this has come at great cost, because the user of the proof
assistant is no longer able to produce the proof of A using
refinement, and must choose some witness before proceeding.
This is disruptive to the interactive and incremental character
of refinement proof, and we believe that the time is ripe to
revisit this question.

2) Non-local unification: choosing barbarism: The most
commonly adopted solution is to introduce a notion of
existential variable and solve these non-locally in a proof
via unification or spontaneous resolution. The basic idea is
that you proceed with the proof of the second premise without
yet knowing what M is, and then at a certain point, it will
hopefully become obvious what it must be, on the basis of
some goal in the subtree of this premise:

∗
?m ∈ A

N
B[?m] true

〈?m, N〉
(x : A)× B[x] true

An essential characteristic of this approach is that when
it is known what ?m must be, this knowledge propagates
immediately to all nodes in the proof that mention it. This
is a fundamentally imperative operation, and makes it very
difficult to reason about proof scripts; moreover, it complicates
the development of a clean and elegant semantics (denotational
or otherwise) for proof refinement. At the very least, a fully
formal presentation of the transition rules for such a system
will be very difficult, both to state and to understand.

Another potential problem with using unification to solve
goals is that one must be very cautious about how it is applied:
using unification uncritically in the refinement apparatus can
change the character of the object logic. One of the more
destructive examples of this happening in practice was when
overzealous use of unification in the Agda proof assistant [17]
led to the injectivity of type constructors being derivable,
whence the principle of the excluded middle could be refuted.

Uncritical use of unification in type theories like that of
Nuprl might even lead to inconsistency, since greater care
must be taken to negotiate the intricacies of subtyping and
functionality which arise under the semantic typing discipline.
As Cockx, Devriese and Piessens point out in their recent refit
of Agda’s unification theory, unification must be integrated
tightly with the object logic in order to ensure soundness [18].

3) Our solution: adopt a dependent refinement discipline:
Taking a step back, there are two more things that should make
us suspicious of the use of existential variables and unification
in the above:

1) We still do not exhibit A using refinement rules, but rather
simply hope that at some point, we shall happen upon
(by chance) a suitable witness for which we can check
membership. In many cases, it will be possible to inhabit
B[?m] regardless of whether ?m has any referent, which
will leave us in much the same position as we were in



Nuprl: we must cook up some arbitrary A independently
without any help from the refinement rules.

2) It is a basic law of type-theoretic praxis that whatever
structure exists at the propositional level should mirror a
form of construction that already exists at the judgmental
level, adding to it only those characteristics which distin-
guish truth from the evidence of an arbitrary judgment
(e.g. functionality, local character, fibrancy, etc.). In this
case, the use of existential variables and unification seems
to come out of nowhere, whereas we would expect a
dependent sum at the type level to be defined in terms of
some notion of dependent sum at the judgmental level.

With the above in mind, we are led to try and revise the old
LCF apparatus to support a dependent refinement discipline,
relaxing the constructible subgoals property in such a way as
to admit a coding for the rule given at the beginning of this
section, ×R.

II. SURVEY OF RELATED WORKS

A. Semantics of proof refinement in Nuprl

The most detailed denotational semantics for tactic-based
proof refinement that we are aware of is contained in Todd
Knoblock’s PhD thesis [19] vis-à-vis the Nuprl refinement
logic. Knoblock’s purpose was to endow Nuprl with a tower of
metalogics, each reflecting the contents of the previous ones,
enabling internal reasoning about the proof refinement process
itself; this involved specifying semantic domains for (reflected)
Nuprl judgments, proofs and proof tactics in the Nuprl logic.

A detailed taxonomy of different forms of proof tactic was
considered, including search tactics (analogous to valid tactics
in LCF), partial tactics (tactics whose domain of applicability
is circumscribed a priori), and complete tactics (partial tactics
which produce no subgoals when applied in their domain of
applicability).

Spiritually, our apparatus is most closely related to
Knoblock’s contributions, in light of the purely semantical
and denotational approach which he pursued. The fact that
Knoblock’s semantic universe for proof refinement was the
Nuprl logic itself enabled users of the system to prove internally
the general effectiveness of a tactic on some class of Nuprl
sequents once and for all; then, such a tactic could be applied
without needing to be executed.

B. Isabelle as a meta-logical framework

Isabelle, a descendent of Cambridge LCF, is widely consid-
ered the gold standard in tactic-based proof refinement today;
at its core, it is based on a version of Intuitionistic higher-
order logic called Isabelle/Pure, which serves as the logical
framework for all other Isabelle theories, including the famous
Isabelle/HOL theory for classical higher-order logic.

In Isabelle, tactics generally operate on a full proof state (as
opposed to the “local” style pioneered in LCF); a tactic is a
partial function from proof states to lazy sequences of proof
states. Note that the sequences here are used to accomodate
sophisticated, possibly non-deterministic search schemata. In
contrast to other members of the LCF family, the notion of

validation has been completely eschewed; this has relieved
Isabelle of the need to duplicate rules in both forward and
backward inference, and simplifies the correctness conditions
for a tactic.

Isabelle does not address the issue of dependent refinement,
instead relying heavily on instantiation of schematic variables
by higher-order unification. Because HOL is Isabelle’s main
theory, this is perhaps not so bad a state of affairs, since
the most compelling uses of dependent refinement arise in
proof systems for dependent type theory, in which a domain
of discourse is identified with the inhabitants of a type
or proposition. In non-type-theoretic approaches to logic, a
proposition is proved using inference rules, whereas an element
of the domain of discourse is constructed according to a
grammar.

With that said, instantiation of schematic variables at higher
type in Isabelle is not always best done by unification alone,
and often requires manual guiding. A pathological case is the
instantiation of predicates shaped like ?m[?n], where it is often
difficult to proceed without further input [20, §4.2.2].

Under a dependent refinement discipline, however, the instan-
tiation of schematic variables ranging over higher predicates
can be pursued with the rules of the logic as a guide, in
the same way that all other objects under consideration are
constructed: in the validations of backward inference rules.

This insight, which is immanent in the higher-order
propositions-as-types principle, is especially well-adapted for
use in implementations of Martin-Löf-style dependent type
theory, where it is often the case that the logic can guide the
instantiation of a predicate variable in ways that pure unification
cannot. This is essentially the difference between a direct and
algorithmic treatment of synthetic judgment, and its declarative
simulation as analytic judgment [21].

We stress that higher-order unification is an extremely useful
technique, but it appears to complement rather than obviate a
proper treatment of dependent refinement. Though it is not the
topic of this paper, we believe that a combination of the two
techniques would prove very fruitful.

C. OLEG & Epigram: tactics as admissible rules

Emanating from Conor McBride’s dissertation work is a
unique approach to proof elaboration which has been put to
great use in several proof assistants for dependent type theory
including OLEG, Epigram and Idris [22], [23], [24], [25], [26].
A more accessible introduction to McBride’s methodology is
given in [27].

Like ours, McBride’s approach rests upon the specification
of judgments in context which are stable under context
substitution; crucially, McBride’s apparatus was the first
treatment of proof refinement to definitively rule out invalid
scoping of schematic variables, a problem which plagued early
implementations of “holes”. In particular, McBride’s framework
is well suited to the development of type checkers, elaborators
and type inferencers for formal type theories and programming
languages.



One of the ways in which our contribution differs from
McBride’s system is that we treat rules of inference alge-
braically, i.e. as first-class entities in a semantic domain;
then, following the LCF tradition, we develop a menagerie
of combinators (tacticals) by which we can combine these
rules into composite proofs. In this sense, our development
is a treatment of derivability relative to a trusted basis of
(backward) inference rules.

McBride’s approach is, on the contrary, to take the trusted
basis of inference rules as given ambiently rather than alge-
braically, and then to develop a theory of proof tactic based
on admissibility with respect to this basis theory.

Both approaches have been shown to be useful in imple-
mentations of type theory, and we hope to better understand
through practice the various trade-offs which they induce.

D. Typed tactics with Mtac

The idea of capturing proof tactics using a monad is put to
use in the Mtac language, which is an extension to Coq which
supports typed tactic programming [28].

E. Dependent subgoals in Coq 8.5

In his PhD thesis, Arnaud Spiwack addressed the lack of
dependent refinement in the Coq proof assistant by redesigning
its tactic apparatus [29]; Spiwack’s efforts culminated in
the release of Coq 8.5 in early 2016, which incorporates
his new design, including support for “dependent subgoals”
(which we call dependent refinement) and tactics that operate
simultaneously on multiple goals (which we call multitactics).

Spiwack’s work centered around a new formulation of LCF-
style tactics which was powerful enough to support a number of
useful features, including backtracking and subgoals expressing
dependencies on other subgoals; the latter is effected through
an imperative notion of existential variable (in contrast to the
purely functional semantics for subgoal dependency that we
give in this paper).

F. Our contributions

We take a very positive view of Spiwack’s contributions
in this area, especially in light of the successful concrete
realization of his ideas in the Coq proof assistant. As far
as engineering is concerned, we consider Spiwack to have
definitively resolved the matter of dependent refinement for
Coq.

At the same time, we believe that there is room for
a mathematical treatment of dependent refinement which
abstracts from the often complicated details of real-world
implementations, and is completely decoupled from specific
characteristics of a particular logic or proof assistant; our
experience suggests that the development of a semantics for
proof refinement along these lines can also lead to a cleaner,
more reusable concrete realization.

Our contribution is a precise, compositional and purely
functional semantics for dependent proof refinement which
is also immediately suitable for implementation; we have also
introduced a novel behavioral distinction between refinement

rules and tactics based on naturality. Our framework is called
Dependent LCF, and our Standard ML implementation has
already been used to great effect in the new RedPRL proof
assistant for computational cubical type theory [6], [30].

III. PRELIMINARIES

A. Lawvere Theories
We wish to study the algebraic structure of dependent proof

refinement for a fixed language of constructions or evidence.
To abstract away from the bureaucratic details of a particular
encoding, we will work relative to some multi-sorted Lawvere
theory T, a strictly associative cartesian category whose objects
can be viewed as sorts or contexts (finite products of sorts) and
whose morphisms may be viewed as terms or substitutions.

Definition III.1 (Lawvere theory). To define the notion of a
multi-sorted Lawvere theory, we fix a set of sorts S; let S×
be the free strict associative cartesian category on S. Then,
an S-sorted Lawvere theory is a strictly associative cartesian
category T equipped with a cartesian functor k : S× → T.

We will write Γ , ∆, Ξ : T for the objects of T and a, b, c :
Γ ⇒ ∆ for its morphisms. We will freely interchange “context”
and “sort” (and “substitution” and “term”) when one is more
clear than the other. We will sometimes write Γ, x : ∆ for the
context Γ × ∆, and then use x elsewhere as the canonical
projection p : Γ × ∆⇒ ∆ .
Remark III.2 (Second-order theories). In the simplest case,
a Lawvere theory T forms the category of contexts and
substitutions for some first-order language. However, as Fiore
and Mahmoud have shown, this machinery scales up perfectly
well to the case of second-order theories (theories with
binding) [31].

In that case, the objects are contexts of second-order variables
associated to valences (a sort together with a list of sorts of
bound variables), and the maps are second-order substitutions;
when the output of a map is a single valence ~σ.τ, the map can
be read as a term binder.

One of our reasons for specifying no more about T than we
have done so far is to ensure that our apparatus generalizes well
to the case of second-order syntax, which is what is necessary
in nearly every concrete application of this work.

In what follows, we will often refer to variables as schematic
variables in order to emphasize that these are variables which
range over evidence in the proof refinement apparatus, as
opposed to variables from the object logic. In the first-order
case, all variables are schematic variables; in the second-
order case, the second-order variables (called metavariables by
Fiore et al) are the schematic variables, and the object variables
are essentially invisible to our development.

B. Questions Concerning a Semantic Universe
Our main task is to define a semantic universe in which

we can build objects indexed in T, which respect substitutions
of schematic variables. Some kind of presheaf category, then,
seems to be what we want—and then proof refinement rules
should be natural transformations in this presheaf category.



The question of which indexing category to choose is a
subtle one; in order to construct our proof states monad, we
will need to work with something like presheaves over T,
i.e. “variable sets” which implement all substitutions. However,
most interesting refinement rules that we wish to define will not
commute with substitutions in all cases, which is the content
of naturality. This corresponds to the fact that a refinement
rule may fail to be applied if there is a schematic variable in a
certain position, but may succeed if that variable is substituted
for by some suitable term.

Essentially the same problem arises in the context of
coalgebraic logic programming [32], [33]; several methods
have been developed to deal with this behavior, including
switching to an order-enriched semantic universe and using lax
natural transformations for the operational semantics; another
approach, called saturation involves trivializing naturality by
treating T as a discrete category |T| (by taking the free category
on the set of objects of T), and then “saturating” constructions
along the adjunction i∗ : T̂→ |̂T| a i∗ : |̂T|→ T̂ .

In the context of general dependent proof refinement, the lax
semantics are the most convenient; we will apply a variation on
this approach here, which also incorporates discrete reindexing
for interpreting tactics.

Notation III.3. Following the notation of the French
school [34, p. 25], we write X̂ for the category of presheaves
SETXop

on a category X.

Notation III.4. We will write Ctx : T̂ for the constant presheaf
of T-objects, Ctx(Γ) , ob(T). We may also write Γ 
 X : F
to mean X ∈ F(Γ) when F : T̂.

We will frequently have need for a presheaf of terms of an
appropriate sort relative to a particular context, (Γ ` ∆) : T̂.
This we can define informally as follows:

Ξ, Γ ` a : ∆

Ξ 
 a : (Γ ` ∆)

Formally, this is the exponential H(∆)H(Γ) with H(−) :
T→ T̂ the Yoneda embedding; this perspective is developed
in Appendix A.

C. Presheaves and lax natural transformations

Let POS be the order-enriched category of partially ordered
sets; arrows are endowed with an order by pointwise approxi-
mation: f 4 g iff x 4 y ⇒ f(x) 4 g(y) .

Definition III.5 (Presheaves and lax natural transformations).
A POS-valued presheaf on C is a functor from Cop into POS.

A lax natural transformation φ between two such presheaves
P,Q is a collection of components whose naturality square
commutes up to approximation in the following sense:

P(d) P(c)

Q(d) Q(c)

P(f)

φd φc

Q(f)

4

In other words, we need have only that Q(f) ◦ φd 4 φc ◦ P(f)
in the above diagram.

Notation III.6. We will write C̃ for the category of POS-
valued presheaves and lax natural transformations on C.
Note that the presheaves themselves are strict; only natural
transformations between the presheaves are lax. A SET-valued
presheaf P : Ĉ can be silently regarded as a POS-valued
presheaf P : C̃ by endowing each fiber with the discrete order.

IV. A FRAMEWORK FOR PROOF REFINEMENT

We will now proceed to develop the Dependent LCF theory
by specifying the semantic objects under consideration, namely
judgment structures, proof states, refinement rules, and proof
tactics.

A. Judgment Structures

A judgment is an intention toward a particular form of
construction; that is, a form of judgment is declared by
specifying the T-object (that is, sort or context) which classifies
what it intends to construct. It is suggestive to consider this
object the output of a judgment, in the sense that if the judgment
is derived, it will emit a substitution of the appropriate sort
which can be used elsewhere.

For example, in a Martin-Löf-style treatment of intuitionistic
logic (see [35]), the judgment P true constructs objects of
sort exp, where exp is the sort of expressions in a basic
programming language.

In the dependent proof refinement discipline, the statement
of a judgment may be interrupted by a schematic variable (e.g.
the judgment P(x) true), which ranges over the evidence of
some other judgment, and may be substituted for by a term of
the appropriate sort. This behavior captures the ubiquitous case
of existential instantiation, where we have a predicate applied
to a schematic variable which stands for an element of the
domain of discourse, to be refined in the course of verifying
another judgment.

To make this precise, we can define a notion of “judgment
structure” as a collection of “judgments” which varies over
contexts and substitutions, along with an assignment of sorts
to judgments: the sort assigned to a judgment is then the sort
of object that the judgment intends to construct.

Then, a homomorphism between judgment structures would
be a natural transformation of presheaves which preserves sort
assignments. In Section IV-C will capture refinement rules as
homomorphisms between certain kinds of judgment structures.

Definition IV.1 (Judgment structures). Formally, we define the
category of judgment structures J on T as the slice category
T̃/Ctx; expanding definitions, an object J : J is a presheaf
J : T̃ together with an assignment πJ : J→ Ctx. Then, a map
from J0 to J1 is a natural transformation that preserves π, in
the sense that the following triangle commutes:

J0 J1

Ctx

φ

πJ0 πJ1



It will usually be most clear to define a judgment structure
inductively in syntactic style, by specifying the (meta)judgment
Γ 
 X : J ∆ , pronounced “X is a J-judgment in context Γ ,
constructing a substitution for ∆”, which will mean X ∈ J(Γ)
and πΓJ (X) = ∆ .
Remark IV.2. It is easiest to understand this judgment in the
special case where ∆ is a unary context x : τ; then the judgment
means that the construction induced by the J-judgment X (i.e.
it’s “output”) will be a term of sort τ; in general, we allow
multiple outputs to a judgment, which corresponds to the case
that ∆ is a context with multiple elements.

When defining a judgment structure J, its order will be
specified using the (meta)judgment Γ 
 X 4 Y : J (pronounced
“X approximates Y as a J-judgment in context Γ”), which
presupposes both Γ 
 X : J ∆ and Γ 
 Y : J ∆ ; unless
otherwise specified, when defining a judgment structure, we
usually assume the discrete order.

In practice, a collection of inference rules in (meta)judgments
Γ 
 X : J  ∆ and Γ 
 X 4 Y : J should be understood as
defining the least judgment structure closed under those rules,
unless otherwise stated.

Example IV.3 (Cost dynamics of basic arithmetic). A simple
example of a judgment structure can be given by considering
the cost dynamics for a small language of arithmetic expres-
sions [36, Ch. 7.4].

We will fix two syntactic sorts, num and exp; num will be
the sort of numerals, and exp will be the sort of arithmetic
expressions; the Lawvere theory generated from these sorts and
suitable operations that we define in Figure 1 will be called A.
We will write JA for the category of judgment structures over
A, namely the slice category Ã/CtxsA.

Then, we define a judgment structure JA : JA for our theory
by specifying the following forms of judgment:

1) eval(e) means that the arithmetic expression e : exp can
be evaluated; its evidence is the numeral value of e and
the cost k of evaluating e (i.e. the number of steps taken).

2) add(m;n) means that the numerals m,n : num can be
added; the evidence of this judgment is the numeral which
results from their addition.

The judgment structure JA summarized above is defined
schematically in Figure 1.

We will use the above as our running example, and after
we have defined a suitable notion of refinement rule, we will
define the appropriate rules for the judgment structure JA.

B. Telescopes and Proof States

1) Telescopes: An ordered sequence of judgments in which
each induces a variable of the appropriate sort which the rest
of the sequence may depend on is called a telescope [37].
The notion of a telescope will be the primary aspect in our
definition of proof states later on, where it will specify the
collection of judgments which still need to be proved.
Remark IV.4. If “dependent refinement” were replaced with
“independent refinement”, then the telescope data-structure

could be replaced with lists. This design choice characterizes
the LCF family of proof refinement apparatus.

We intend telescopes to themselves be an endofunctor on
judgment structures, analogous to an iterated dependent sum;
we will define the judgment structure endofunctor Tl : J→ J
inductively.

For a judgment structure J : J, a J-telescope is either ∗
(the empty telescope), or x : X.Ψ with X a J-judgment and
Ψ a J-telescope with x bound; the sort that is synthesized
by a telescope is the product of the sorts synthesized by its
constituent judgments. The precise rules for forming telescopes
are given in Figure 2.

Note how in the above, we have used variable binding
notation; formally, as can be seen in Appendix A, this
corresponds to exponentiation by a representable functor,
which is the usual way to account for variable binding in
higher algebra. To be precise, given a presheaf P : T̂ and a
variable context Γ : T, by exponentiation we can construct a
new presheaf PH(Γ) : T̂ (with H(−) : T→ T̂ the Yoneda
embedding) whose values are binders that close over the
variables in Γ .

Henceforth, we are justified in adopting the variable con-
vention, by which terms are identified up to renamings of their
bound variables.

2) Proof States Monad: We define another endofunctor on
judgment structures for proof states, St : J→ J. Fixing a
judgment structure J : J, there are three ways to form a J-proof
state:

1) When Ψ is a J-telescope that synthesizes sorts Ξ, and a
is a substitution from Ξ to ∆, then Ψ . a :: ∆ is a proof
state; as an object in a judgment structure, this proof state
synthesizes ∆. Intuitively, Ψ is the collection of subgoals
and a is the validation which constructs evidence on the
basis of the evidence for those subgoals. We will usually
write Ψ . a instead of Ψ . a :: ∆ when it is clear from
context.

2) For any ∆, z[∆] is a proof state that synthesizes ∆; this
state represents persistent failure. We will always write
z instead of z[∆].

3) For any ∆, ⊥[∆] is a proof state that synthesizes ∆; this
state represents what we call unsuccess, or failure which
may not be persistent. As above, we will always write ⊥
instead of ⊥[∆].

Moreover, we impose the approximation ordering Γ 

⊥[∆] 4 Ψ . a :: ∆ : St(J) and Γ 
 ⊥[∆] 4 z[∆] : St(J).

The difference between unsuccess and failure is closely
related to the difference between the statements “It is not the
case that P is true” and “P is false” in constructive mathematics.
In the context of proof refinement in the presence of schematic
variables, it may be the case that a rule does not apply at first,
but following a substitution, it does apply; capturing this case
is the purpose of introducing the ⊥ proof state.

Again, the precise rules for forming proof states are given
in Figure 2.



n ∈ N
Γ `A n : num

Γ `A n : num
Γ `A num[n] : exp

Γ `A e1 : exp Γ `A e2 : exp
Γ `A e1 + e2 : exp

JA : J
Γ `A e : exp

Γ 
 eval(e) : JA  xc : num, xv : num
Γ `A m : num Γ `A n : num
Γ 
 add(m;n) : JA  num

Fig. 1. An example theory A and judgment structure JA.

Tl : J→ J Γ 
 ∗ : Tl(J) ·
Γ 
 X : J ∆ Γ, x : ∆ 
 Ψx : Tl(J) Ξ

Γ 
 x : X.Ψx : Tl(J) x : ∆, Ξ
(Telescopes)

St : J→ J
Γ 
 Ψ : Tl(J) Ξ Γ 
 a : (Ξ ` ∆)

Γ 
 (Ψ . a :: ∆) : St(J) ∆
Γ 
 z[∆] : St(J) ∆ Γ 
 ⊥[∆] : St(J) ∆ (Proof States)

Γ 
 S : St(J) ∆

Γ 
 ⊥[∆] 4 S : St(J) (Approximation)

Ψ . a , Ψ . a :: ∆

z , z[∆]

⊥ , ⊥[∆]
(Notations)

Fig. 2. Definitions of telescopes and proof states. Except where otherwise specified, the discrete order is assumed in all definitions above.

Notation IV.5. We will write Ψ . . . Ψ ′ for the concatenation of
two telescopes, where Ψ ′ may have variables from πΓTl(J)(Ψ)

free. Likewise, we will write Ψ ′ . . . S to mean Ψ ′ . . . Ψ . a
when S ≡ Ψ . a, and z when S ≡ z, and ⊥ when S ≡ ⊥.

We can instantiate a monad structure on proof states, which
will abstractly implement the composition of refinement rules,
and which will play a crucial part in the identity and sequencing
tacticals from LCF.

1 St St ◦ St
η µ

The unit and multiplication operators are defined by the
following equations:

ηΓ (X) = x : X. ∗ . x
µΓ (∗ . a) = ∗ . a

µΓ (x : (Ψx . ax). Ψ . a) = Ψx . . . µΓ,πΓTl(J)(Ψx)
(Ψ . a)[ax/x]

µΓ (x : z. Ψ . a) = z

µΓ (x : ⊥. Ψ . a) = ⊥
µΓ (z) = z

µΓ (⊥) = ⊥

In the interest of clear notation, we have used Ψ to range over
Tl(J) and Ψ to range over Tl(St(J)).

Theorem IV.6. Proof states form a monad on J, i.e. the

following diagrams commute:

St St ◦ St St

St

η

1
µ

St(η)

1

St ◦ St ◦ St St ◦ St

St ◦ St St

µ

St(µ) µ

µ

Proof. By nested induction; see Appendix B.

C. Refinement Rules and Lax Naturality

We can now directly define the notions of refinement rules,
tactics and multitactics as judgment structure homomorphisms.

Definition IV.7 (Refinement rules). For judgment structures
J0, J1 : J, a refinement rule from J0 to J1 is a J-homomorphism
ρ : Rule(J0, J1) , J0 → St(J1) . Unpacking definitions, ρ is
a lax natural transformation between the underlying presheaves
of J and St(J1) which preserves the projection π.

Usually, one works with homogeneous refinement rules ρ :
J→ St(J), which can be called J-rules.

The ordered character of the St(J) judgment structure is
crucial in combination with lax naturality; it is this which
allows us to define a refinement rule which neither succeeds nor
fails when it encounters a schematic variable that is blocking



its applicability: that is, it does not commit to failure under all
possible instantiations for that variable.

Full naturality would entail that a refinement rule commute
with all substitutions from T, whereas lax naturality only
requires this square to commute up to approximation—that is,
for P,Q : T̃, φ : P → Q and a : Γ ⇒ ∆, rather than the identity
Q(a) ◦ φ∆ = φΓ ◦ P(a), we require only the approximation
Q(a) ◦ φ∆ 4 φΓ ◦ P(a).

To understand why this is desirable, let us return to the
example of the judgment form P true; supposing that our
ambient theory T has a sort for propositions prop : T and a
sort for program expressions exp : T, we can define a judgment
structure L : J by specifying a single form of judgment:

Γ ` P : prop
Γ 
 P true : L exp

Then, our task is to code the inference rules of our logic, such
as the following,

P true
P ∨Q true

∨I1

as refinement rules for the judgment structure L. Such a rule
is a judgment structure homomorphism ∧I : L→ St(L) in J;
at first, we might try and write the following:

∨IΓ1
∣∣∣∣ P ∨Q true Z⇒ x : P true . ∗ . inl(x)

Z⇒ z (*)

This, however, is not a well-formed definition, because
it does not commute in any sense with substitutions:
for instance ∨I

Γ,x:prop
1 ( x true )[P ∨Q/x] = z, whereas

∨IΓ1( x true [P ∨Q/x]) = x : P true . ∗ . inl(x). However, re-
call that refinement rules are subject only to lax naturality, i.e.
naturality up to approximation; with a small adjustment to our
definition, we can make it commute with substitutions up to
approximation:

∨IΓ1
∣∣∣∣∣∣
P ∨Q true Z⇒ x : P true . ∗ . inl(x)
x Z⇒ ⊥

Z⇒ z
Indeed, the above definition is well-formed (because we

have Γ 
 ⊥ 4 x : P true . ∗ . inl(x) : St(L)). This example
reflects the difference between unsuccess and failure: namely,
the introduction rule above does not yet apply to the goal
x true, but supposing x were substituted for by some P∨Q, it
would then apply. On the other hand, the rule does not apply
at all to the goal P ∧Q true.

Example IV.8 (Refinement rules for cost dynamics). It will be
instructive to consider a more sophisticated example. Resuming
what we started in Example IV.3, we are now equipped to
encode formal refinement rules for the judgment structure
JA : J defined in Figure 1.

We will implement the cost dynamics using two evaluation
rules and one rule to implement the addition of numerals:

evalnum : JA → St(JA)
eval+ : JA → St(JA)

add : JA → St(JA)

First, let’s consider what these rules would look like
informally on paper, writing e ⇓k n for the statement that the
judgment eval(e) obtains, synthesizing cost k and numeral n,
and writing m+ n ≡ o for the statement that the judgment
add(m;n) obtains, synthesizing numeral o:

num[n] ⇓0 n evalnum

e1 ⇓k1 n1
e2 ⇓k2 n2 k1 + k2 ≡ k12

1+ k12 ≡ k
n1 + n2 ≡ n

e1 + e2 ⇓k n eval+

m+ n ≡ m+ n
add

In keeping with standard practice and notation, in the
informal definition of a refinement rule, clauses for failure
and unsuccess are elided. When we code these rules as
judgment structure homomorphisms, we add these clauses
in the appropriate places, as can be seen from the formal
definitions of evalnum, eval+ and add in Figure 3.

D. Combinators for Derived Refinement Rules

We can develop a menagerie of combinators for refinement
rules which allow the development of derived rules. More
generally, given a basis of refinement rules, it is possible to
characterize the space of derivable rules by the closure of this
basis under certain combinators (see Appendix D).

First, we will begin by defining an auxiliary judgment
structure J×N : J, which tags J-judgments with an index:

J×N : J
Γ 
 X : J ∆ i ∈ N
Γ 
 〈X, i〉 : J×N  ∆

Next, define an operation to label the subgoals of a proof
state with their index:

lbl : St(J)→ St(J×N)

lblΓ
∣∣∣∣∣∣
Ψ . a Z⇒ lblΓ0(Ψ) . a
⊥ Z⇒ ⊥
z Z⇒ z

where

lbli : Tl(J)→ Tl(J×N)

lblΓi
∣∣∣∣∣ ∗ Z⇒ ∗
x : X.Ψ Z⇒ x : 〈X, i〉. lblΓ,x:π

Γ
J (X)

i+1 (Ψ)

Let ~ρ range over a list of rules ρi : Rule(J0, J1); now we
define a derived rule which applies the appropriate rule to a
labeled judgment:

proj(~ρ) : Rule(J×N, J)

proj(~ρ)Γ 〈X, i〉 ,

{
ρΓi (X) if i < |~ρ|

ηΓ (X) otherwise



evalΓnum

∣∣∣∣∣∣
eval(num[m]) Z⇒ ∗ . [0,m]
eval(x) Z⇒ ⊥

Z⇒ z
evalΓ+

∣∣∣∣∣∣∣∣
eval(e1 + e2) Z⇒ [

[xc, xv] : eval(e1). [yc, yv] : eval(e2).
zc : add(xc;yc). z ′c : add(1; zc). zv : add(xv;yv)

]
. [z ′c, zv]

eval(x) Z⇒ ⊥
Z⇒ z

addΓ
∣∣∣∣∣∣
add(m;n) Z⇒ ∗ .m+ n
add( ; ) Z⇒ ⊥

Z⇒ z
Fig. 3. Defining refinement rules for JA, the judgment structure of cost dynamics for arithmetic expressions.

Now, given rules ρ : Rule(J0, J1) and ~ρ : List(Rule(J1, J2)),
we can define the composition ρ;~ρ : Rule(J0, J2) using the
multiplication operator of the St monad as follows:

ρ;~ρ : Rule(J0, J2)

ρ;~ρ , µ ◦ St(proj(~ρ)) ◦ lbl ◦ ρ

In Appendix D, we develop a very sophisticated fibered
categorical notion of closed refinement logic (“refiner”) together
with a characterization of derivability relative to refiners.

E. From Refinement Rules to Tactics

Tactics are distinguished from refinement rules in that they
are not subject to the lax naturality condition; this is because
in tactic-based proof refinement, it is necessary to support
tactics which do not commute with substitutions, not even up
to approximation—for example, orelse and try will result in
completely proof states before and after a substitution. For
this reason, we define a new category J◦ of discrete judgment
structures, for which tactics will be certain homomorphisms.

Definition IV.9 (Discrete Judgment Structures). We now define
the category of discrete judgment structures, J◦ , |̂T|/Ctx,
where |T| is the subcategory of T which contains only identity
arrows, and |̂T| , |T|op → SET.

Then J◦ homomorphisms are the same as those of J, except
their naturality condition is trivially satisfied for any collection
of components; this is because only identity maps occur |T|,
so the naturality squares are degenerate. Furthermore, because
the components of such homomorphisms are defined in SET,
there is no requirement of monotonicity.

By composing with the inclusion i : |T|→ T and the
forgetful functor U : POS→ SET, any judgment structure
J : J can be reindexed to a discrete judgment structure
|J| : J◦ , U ◦ J ◦ i, with πΓ|J| , π

Γ
J :

|T|op Top POS SETi

|J|

J U

Remark IV.10. If we intended to develop a theory of tactics
which do not commute with substitution, why did we bother
with the presheaf apparatus in the first place? In essence, the
reason is that we are building a semantics which accounts
for both refinement rules and tactics, and refinement rules are
distinguished from other proof refinement strategies precisely
by the characteristic of lax naturality.

The purpose of tactics, on the other hand, is to subvert
naturality in order to formalize modular “proof sketches” which
are applicable to a broad class of goals. Indeed, this subversion
of naturality by tactics is simultaneously the source of their
unparalleled practicality as well as the cause of their notoriously
brittle character. The uniformity of action induced by lax
naturality lies in stark opposition to the modularity required of
tactics; we will neutralize this contradiction by passing through
discretization to J◦.

F. Tactics and Recursion

In keeping with standard usage, a proof tactic is a potentially
diverging program that computes a proof on the basis of
some collection of refinement rules. In order to define tactics
precisely, we will first have to specify how we intend to interpret
recursion.

A very lightweight way to interpret recursion is suggested by
Capretta’s delay monad [38] (the completely iterative monad on
the identity functor), a coinductive representation of a process
which may eventually return a value. We can define a variation
on Capretta’s construction as a monad∞ : J◦ → J◦ on discrete
judgment structures, defined as the greatest judgment structure
closed under the rules in Figure 4.

To summarize, for a judgment structure J : J◦, there are two
ways to construct a ∞J-judgment:

1) bXc is an ∞J-judgment when X is a J-judgment.
2) I X is an ∞J-judgment when X is an ∞J-judgment.

Lemma IV.11 (Delay monad). ∞ : J◦ → J◦ forms a monad
on J◦.

We can repeat the same construction as above to acquire a
monad ∞ : J→ J, which adds to the previous construction the
appropriate action for substitutions. Abusing notation, we will
use the same symbol for both monads when it is clear from



∞ : J◦ → J◦
Γ 
 X : J ∆

Γ 
 bXc :∞J ∆

Γ 
 X :∞J ∆

Γ 
 I∆ X :∞J ∆
(Delay Monad)

I X , I∆ X (Notation)

Fig. 4. Capretta’s delay monad on discrete judgment structures.

context what is meant; this is justified in practice, because the
assignment of objects is the same for the two monads.

Notation IV.12. We will write η∞ : 1J◦ →∞ and µ∞ :∞ ◦∞→∞ for the unit and multiplication operators respec-
tively. We will also employ the following notational convention,
inspired by the “do-notation” used in the Haskell programming
language for monads:

x←M;N(x) , µ∞(∞(x 7→ N(x))(M))

Definition IV.13 (Tactics and multitactics). A tactic for
judgment structures J0, J1 : J is a J◦-homomorphism:

Tactic(J0, J1) , |J0|→∞|St(J1)|

Usually one works with homogeneous tactics φ : Tactic(J, J),
which are called J-tactics. A J-multitactic is a tactic for the
judgment structure St(J).

G. Tacticals as Tactic Combinators

At this point we are equipped to begin defining a collection
of standard “tacticals”, or tactic combinators.

1) Tactics from Rules: Every rule ρ : J0 → St(J1) can be
made into a tactic bρc : Tactic(J0, J1) , η∞ ◦ |ρ|.

2) Conditional Tacticals: To begin with, we can define the
join of two tactics φ,ψ : Tactic(J0, J1), which implements
orelse from LCF:

φ⊕ψ : Tactic(J0, J1)

(φ⊕ψ)Γ (X) , S← φΓ (X);{
bSc if S = Ψ . a

ψΓ (X) otherwise

In φ⊕ψ we have an example of a natural transformation
which does not commute with substitutions; this is fine,
because tactics are defined as discrete judgment structure
homomorphisms, and are therefore subject to only trivial
naturality conditions.

In combination with the identity tactic id : Tactic(J, J) ,
bηc, we can define the try tactical which replaces a failure or
unsuccess with the identity:

try(φ) : Tactic(J, J)

try(φ) , φ⊕ id

3) Multitacticals: We will factor the LCF sequencing
tacticals then and thenl into a combination of a “multitactical”
(a tactic that operates on St(J) instead of J) and a generic
sequencing operation.

These multitacticals will be factored through tacticals that
are sensitive to the position of a goal within a proof state,
namely const and proj.

Let φ range over tactics Tactic(J, J), and let ~φ range over
a list of such tactics. We will now define some further tactics
which work over labeled judgments (following Section IV-D):

const(φ) : Tactic(J×N, J)

const(φ)Γ 〈X, i〉 , φΓ (X)

proj(~φ) : Tactic(J×N, J)

proj(~φ)Γ 〈X, i〉 ,

{
φΓi (X) if i < |~φ|

bηΓ (X)c otherwise

Now, we need to show how to turn transform an operation on
labeled judgments into a multitactic. We will need an operation
to turn a telescope of potentially diverging computations into
a potentially diverging computation of a telescope:

await : Tl(∞J)→∞Tl(J)
awaitΓ

∣∣∣∣∣∣∣∣
∗ Z⇒ b∗c
x : X∞. Ψ∞ Z⇒ X← X∞;

Ψ← awaitΓ,x:πΓ
J
(X)(Ψ

∞);

bx : X.Ψc

Using the above, we can transform χ : Tactic(J×N, J) into a
multitactic St{χ} : Tactic(St(J),St(J)):

St{χ} : Tactic(St(J),St(J))
St{χ}Γ

∣∣∣∣∣∣∣∣
⊥ Z⇒ b⊥c
z Z⇒ bzc
Ψ . a Z⇒ Ψ ′ ← awaitΓ (TlΓ (χ)(lblΓ0(Ψ)));

bΨ ′ . ac

defining the auxiliary function TlΓ as follows:1

TlΓ : Tactic(J0, J1)× Tl(J0)(Γ)→ Tl(∞St(J1))(Γ)
TlΓ (χ)

∣∣∣∣ ∗ Z⇒ ∗
x : X.Ψ Z⇒ x : χΓ (X).TlΓ,πΓ

J
(X)(χ,Ψ)

Finally, we can define two multitacticals: all which applies
a single tactic to all goals, and each which applies a list of
tactics pointwise to the subgoals:

all, each : Tactic(J, J)→ Tactic(StJ,StJ)

all(φ) , St{const(φ)}
each(φ) , St{proj(φ)}

1Note that this does not follow immediately from the functoriality of Tl :
J → J, because χ only a map in J◦.



4) Generic Sequencing: Fixing a tactic φ : Tactic(J0, J1)
and ψ : Tactic(St(J1),St(J2)) as above, we can define the
sequencing of ψ after φ as the following composite, also
displayed in Figure 5:

seq(φ,ψ) : Tactic(J0, J2)

seq(φ,ψ) ,∞|µ| ◦ µ∞ ◦∞(ψ) ◦ φ

Now observe that the LCF sequencing tacticals can be
defined in terms of the above combinators:

then(φ,ψ) , seq(φ, all(ψ))

thenl(φ, ~ψ) , seq(φ, each(~ψ))

5) Recursive Tacticals: Capretta’s delay monad (Figure 4)
allows us to develop a fixed point combinator for tacticals; in
particular, given a tactical T : Tactic(J, J)→ Tactic(J, J), we
have a fixed point fix(T) : Tactic(J, J). For the full construction
of the fixed point fix(T), see Appendix C.

Using this, we can develop the standard repeat tactical from
LCF, which is in practice the most commonly used recursive
tactical:

repeat(φ) : Tactic(J, J)

repeat(φ) , fix(ψ 7→ try(then(φ,ψ)))

Other recursive tacticals are possible, including recursive
multitacticals.

Example IV.14 (Tactic for cost dynamics). Returning to our
running example (Examples IV.3, IV.8), we can now define a
useful tactic to discharge all JA-judgments; our first cut can
be defined in the following way:

autoaux : Tactic(JA, JA)

autoaux , bevalnumc ⊕ beval+c ⊕ baddc

auto : Tactic(JA, JA)

auto , repeat(autoaux) (*)

This is not quite, however, what we want: the force of
this tactic is to run all our rules repeatedly (until failure or
completion) on each subgoal. This is fine, but because these
processes are taking place independently on each subgoal, the
instantiations induced in one subgoal will not propagate to an
adjacent subgoal until the entire process has quiesced.

The practical result of this approach is that the auto tactic
will terminate with unresolved subgoals, and must be run
again; our intention was, however, for the tactic to discharge
all subgoals through repetition.

What we defined above can be described as depth-first
repetition; what we want is breadth-first repetition, in which
we run all the rules once on each subgoal, repeatedly. Then,
substitutions propagate along the subgoals telescope with every
application of autoaux, instead of propagating only after all
applications of autoaux.

The way to achieve this is to apply our repetition
at the level of multitactics, instantiating the tactical as

repeat : Tactic(St(JA),St(JA))→ Tactic(St(JA),St(JA)) in-
stead of repeat : Tactic(JA, JA)→ Tactic(JA, JA). This we can
accomplish as follows:

automulti : Tactic(St(JA),St(JA))

automulti , repeat(all(autoaux))

auto : Tactic(JA, JA)

auto , seq(id, automulti)

V. CONCRETE IMPLEMENTATION IN STANDARD ML

As part of the RedPRL project [6], we have built a
practical implementation of the apparatus described above
in the Standard ML programming language [39].2

RedPRL is an interactive proof assistant in the Nuprl
tradition for computational cubical type theory [30], a higher
dimensional variant of Martin-Löf’s extensional type the-
ory [10]. Replacing LCF with Dependent LCF has enabled us to
eliminate every last disruption to the proof refinement process
in RedPRL’s refinement logic, including the introduction rule
for dependent sums (as described in Section I-B), and dually,
the elimination rule for dependent products.

Dependent LCF has also sufficed for us as a matrix in which
to develop sophisticated type synthesis rules à la bidirectional
typing, which has greatly simplified the proof obligations
routinely incurred in an elaborator or refiner for extensional
type theory, without needing to develop brittle and complex
tactics for this purpose as was required in the Nuprl System.

Our experience suggests that, contrary to popularly-accepted
folk wisdom, practical and usable implementations of exten-
sional type theory are eminently possible, assuming that a
powerful enough form of proof refinement apparatus is adopted.
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APPENDIX

A. Formal Definitions

We have used a convenient syntactic notation based on
variable binding in the above. The definitions of telescopes and
proof states can be given more precisely in category-theoretic
notation, at the cost of some bureaucracy. In return, we can
tell that these objects are indeed judgment structures according
to our definition purely on the basis of how they are formed.

Definition A.1 (Yoneda embedding). Write H(Γ) : T̂ for
the representable presheaf −⇒ Γ of Γ -terms in the “current”
context.

The collection of terms-in-context can be internalized into
our presheaf category using the Yoneda embedding and the
exponential. Define the presheaf (Γ ` ∆) : T̂ as the exponential
H(∆)H(Γ); recall the definition of the exponential in a functor
category:

(Γ ` ∆)(Ξ) = H(∆)H(Γ)
(Ξ)

∼= [H(Ξ)×H(Γ),H(∆)] (definition)
∼= [H(Ξ× Γ),H(∆)] (limit preservation)
∼= H(∆)(Ξ× Γ) (Yoneda lemma)
∼= Ξ× Γ ⇒ ∆ (definition)

In what follows, we will frequently exponentiate by a
representable functor; as above, naturality guarantees that the
resulting object depends in no essential way on its input,
justifying a purely syntactic notation based on variable binding.

Our definitions of telescopes and proof states as judgment
structures can be restated in categorical form below; let p be
the evident variable projection map in T.

Tl(J) , µT. 1 +
∑
X:J T

H(πJ(X))

πTl(J)(roll(inl(∗))) , 1
πTl(J)(roll(inr(X,Ψ))) , πJ(X)× πTl(J)(Ψ(p))

St(J) ,
∑
∆:Ctx

(
{z,⊥}+

∑
Ψ:Tl(J) πTl(J)(Ψ) ` ∆

)
πSt(J)(∆, . . . ) , ∆

B. Proofs of Theorems

Lemma A.2. We have the following identity for S : St(J),
Ψ : Tl(J), Ψ : Tl(St(J)) and a : πTl(St(J))(x : Ψ . . . S. Ψ) ` ∆:

µ(x : (Ψ . . . S). Ψ . a) = Ψ . . . µ(x : S.Ψ . a)

Proof. We proceed by case on S.

Case S ≡ z. By calculation.

µ(x : (Ψ . . . S). Ψ . a) = µ(x : (Ψ . . .z). Ψ . a)

= µ(x : z. Ψ . a)

= z

Ψ . . . µ(x : S.Ψ . a) = Ψ . . . µ(x : z. Ψ . a)

= Ψ . . .z

= z

Case S ≡ ⊥. Analogous to the above.

Case S ≡ ΨS . aS. By calculation.

µ(x : (Ψ . . . S). Ψ . a) = µ(x : (Ψ . . . (ΨS . aS)). Ψ . a)

= µ(x : ((Ψ . . . ΨS) . aS). Ψ . a)

= (Ψ . . . ΨS) . . . µ(Ψ . a)[aS/x]

Ψ . . . µ(x : S.Ψ . a) = Ψ . . . µ(x : (ΨS . aS). Ψ . a)

= Ψ . . . (ΨS . . . µ(Ψ . a)[aS/x])

= (Ψ . . . ΨS) . . . µ(Ψ . a)[aS/x]

Theorem IV.6. Proof states form a monad on J, i.e. the
following diagrams commute:

St St ◦ St St

St

η

1
µ

St(η)

1

St ◦ St ◦ St St ◦ St

St ◦ St St

µ

St(µ) µ

µ

Proof. First, we have to show that the left triangle of the unit
identity commutes for any S ≡ Ψ . a:

µ(η(S)) = µ(x : Ψ . a. ∗ . x)
= Ψ . x[a/x]

= Ψ . a

= S

Next, we must show that the right unit triangle commutes.
This, we will do by induction on Ψ:

Case Ψ ≡ ∗.

µ(St(η)(S)) = µ(St(η)(∗ . a))
= µ(∗ . a)
= ∗ . a
= S



Case Ψ ≡ x : X.Ψ ′.

µ(St(η)(S)) = µ(St(η)(x : X.Ψ ′ . a))
= µ(Tl(η)(x : X.Ψ ′) . a)
= µ(x : η(X).Tl(η)(Ψ ′) . a)
= µ(x : (y : X. ∗ . y).Tl(η)(Ψ ′) . a)
= (y : X. ∗) . . . µ(Tl(η)(Ψ ′) . a)[y/x]
= (x : X. ∗) . . . µ(Tl(η)(Ψ ′) . a) (ren.)
= (x : X. ∗) . . . µ(St(η)(Ψ ′ . a))
= (x : X. ∗) . . . Ψ ′ . a (i.h.)
= x : X.Ψ ′ . a

= S

Lastly, we need to show that the monad multiplication square
commutes. Fix S : St(St(St(J))) and proceed by case.
Case S ≡ z.

µ(µ(S)) = µ(z)

µ(St(µ)(S)) = µ(z)

Case S ≡ ⊥. Analogous to the above.

Case S ≡ Ψ . a. Proceed by induction on Ψ.
Case Ψ ≡ ∗.

µ(µ(S)) = µ(µ(∗ . a))
= µ(∗ . a)

µ(St(µ)(S)) = µ(St(µ)(∗ . a))
= µ(∗ . a)

Case Ψ ≡ x : S.Ψ ′ with S ≡ z.

µ(µ(S)) = µ(µ(x : S.Ψ ′ . a))

= µ(z)

= z

µ(St(µ)(S)) = µ(St(µ)(x : S.Ψ ′ . a))
= µ(x : z.Tl(µ)(Ψ ′) . a)
= z

Case Ψ ≡ x : S.Ψ ′ with S ≡ ⊥. Analogous to the above.

Case Ψ ≡ x : S.Ψ ′ with S ≡ Ψ . b.

µ(µ(S)) = µ(µ(x : S.Ψ ′ . a))

= µ(µ(x : (Ψ . b). Ψ ′ . a))

= µ(Ψ . . . µ(Ψ ′ . a)[b/x])

µ(St(µ)(S)) = µ(St(µ)(x : S.Ψ ′ . a))
= µ(x : µ(S).Tl(µ)(Ψ ′) . a)
= µ(x : µ(Ψ . b).Tl(µ)(Ψ ′) . a)

To proceed further, we must perform a second induction on Ψ.

Case Ψ ≡ ∗.

µ(µ(S)) = µ(µ(Ψ ′ . a))[b/x]

µ(St(µ)(S)) = µ(x : ∗ . b.Tl(µ)(Ψ ′) . a)
= µ(Tl(µ)(Ψ ′) . a)[b/x]
= µ(St(µ)(Ψ ′ . a))[b/x]

By the outer inductive hypothesis, we have µ(µ(Ψ ′ . a)) =
µ(St(µ)(Ψ ′ . a)).

Case Ψ ≡ y : S.Ψ ′ with S ≡ z.

µ(µ(S)) = µ(y : z. Ψ ′ . . . µ(Ψ ′ . a)[b/x])

= z

µ(St(µ)(S)) = µ(x : µ(y : z. Ψ ′ . b).Tl(µ)(Ψ ′) . a)
= µ(x : z.Tl(µ)(Ψ ′) . a)
= z

Case Ψ ≡ y : S.Ψ ′ with S ≡ ⊥. Analogous to the above.

Case Ψ ≡ y : S.Ψ ′ with S ≡ Ψ . c.

µ(µ(S)) = µ(y : (Ψ . c). Ψ ′ . . . µ(Ψ ′ . a)[b/x])

= Ψ . . . µ((Ψ ′ . . . µ(Ψ ′ . a)[b/x]))[c/y]

µ(St(µ)(S)) = µ(x : µ(y : (Ψ . c). Ψ ′ . b).Tl(µ)(Ψ ′) . a)
= µ(x : (Ψ . . . µ(Ψ ′ . b)[c/y]).Tl(µ)(Ψ ′) . a)
= Ψ . . . µ(x : µ(Ψ ′ . b)[c/y].Tl(µ)(Ψ ′) . a)

(Lemma A.2)

Now, we need to show the following:

µ((Ψ ′ . . . µ(Ψ ′ . a)[b/x]))[c/y]
= µ(x : µ(Ψ ′ . b)[c/y].Tl(µ)(Ψ ′) . a)

It suffices to show:

µ((Ψ ′ . . . µ(Ψ ′ . a)[b/x]))[c/y]
= µ(x : µ(Ψ ′ . b).Tl(µ)(Ψ ′) . a)[c/y]

Cancelling substitutions, we need only show the following:

µ((Ψ ′ . . . µ(Ψ ′ . a)[b/x]))
= µ(x : µ(Ψ ′ . b).Tl(µ)(Ψ ′) . a)

But this holds by our inner inductive hypothesis.

C. Fixed Points of Tacticals

We will now demonstrate how to take the fixed point of a
tactical using Capretta’s delay monad (Figure 4), and use it
to construct the commonly-used repeat tactical from LCF. To
begin with, we will need to define fiberwise products and ω-
sequences as operations on judgment structures. The fiberwise
product of two judgment structures is a judgment structure
whose judgments consist in pairs of judgments that synthesize
the same sort ∆:



⊗ : J◦ × J◦ → J◦
Γ 
 X : J0  ∆ Γ 
 Y : J1  ∆

Γ 
 〈X, Y〉 : J0 ⊗ J1  ∆
(Fiberwise Product)

This is just the pullback of the two judgment structures
when viewed as objects in the slice category |̃T|/Ctx:

J0 ⊗ J1 J0

J1 Ctx

y
πJ0

πJ1

Next, we define an endofunctor on judgment structures that
takes infinite sequences of judgments:

−ω : J◦ → J◦
Γ 
 X : Jn  ∆ (n ∈ N)
Γ 
 〈Xn | n〉 : Jω  ∆

(ω-Sequence)
This too can be presented as the limit lim←−n∈N Jn where Jn is
the n-fold fiberwise product of J with itself.

Now that we have defined the objects we require, we will
begin to define the operations by which we can take the fixed
point of a tactical, following [38]. First, we have a way to
“race” two delayed judgments, returning the one which resolves
first:

race :∞J⊗∞J→∞J
raceΓ

∣∣∣∣∣∣
〈bXc, Y∞〉 Z⇒ bXc
〈 I X∞, bYc〉 Z⇒ bYc
〈 I X∞,I Y∞〉 Z⇒ raceΓ 〈X∞, Y∞〉

This construction can be lifted to an ω-sequence of judgments
as follows:

searchn : (∞J)ω ⊗∞J→∞J
searchΓn

∣∣∣∣ 〈F, bXc〉 Z⇒ bXc
〈F,I X∞〉 Z⇒ I searchΓn+1〈F, raceΓ 〈X∞, Fn〉〉

In the delay monad, it is possible to define an object which
never resolves:

neverΓ :∞J(Γ)
neverΓ = I neverΓ

Now, using this and our unbounded search operator, we can
take the least upper bound of an ω-sequence of judgments:

t : (∞J)ω →∞J
tΓ (F) , searchΓ0〈F,neverΓ 〉

Now fix a tactical T : Tactic(J, J)→ Tactic(J, J); it is now
easy to get the fixed point of T (if it exists) by taking the least
upper bound of a sequence of increasingly many applications
of T to itself:

fix(T) : Tactic(J, J)

fix(T)Γ (X) , t〈T
n
Γ (X) | n〉

where

Tn : Tactic(J, J)

T0Γ = X 7→ neverΓ
Tn+1Γ = TΓ (T

n
Γ )

D. Defining Refinement Logics

So far, we have built up a sophisticated apparatus for
deterministic refinement proof, but have not shown how to
instantiate it to a closed logic. In what follows, we will
define a category of refiners, which can be thought of as
implementations of a logic.

Definition A.3 (Heterogeneous refiners). A heterogeneous
refiner for judgment structures J0 : Jop and J1 : J is a
signature of rule names Σ : POS equipped with an interpre-
tation R : Σ→ Rule(J0, J1). More generally, the category of
heterogeneous refiners HRef(J0, J1) is the lax slice category
POS � Rule(J0, J1).

That is to say, a refiner homomorphism is a renaming of
rules which preserves behavior up to approximation:

Σ0 Σ1

Rule(J0, J1)

φ

R0

4
R1

Because this definition gives rise to a functor HRef :
Jop × J→ CAT, via the Grothendieck construction we can

view refiners in general as forming a fibered category
HRef

J× Jop
p ,

defining HRef ,
∮J×Jop

HRef. The fibrational version has
the advantage of specifying the notion of a refiner without
fixing a particular judgment structure, thereby enabling a
direct characterization of homomorphisms between refiners
over different judgment structures.

We will usually restrict our attention to refiners that transform
goals into subgoals of the same judgment structure; therefore,
we must define a notion of homogeneous refiner.

First, let J∼= be the groupoid core of J, i.e. the largest
subcategory of J whose arrows are all isomorphisms; we
have the evident diagonal functor δ : J∼= → J× Jop. Then,
the category Ref of homogeneous refiners is easily described
as the following pullback of the refiner fibration along the
diagonal:

Ref HRef

J∼= J× Jop

p∼=

y
p

δ

Because it is the pullback of a fibration,
Ref

J∼=

p∼= is also a

fibered category.



Definition A.4 (Derivability Closure). We can define the deriv-
ability closure of a homogeneous refiner R ≡ 〈J, Σ,R〉 : Ref.
First define a new rule signature which contains all derived
rules, and extend the interpreter R appropriately:

r ∈ Σ
leaf(r) ∈ Σ?

r ∈ Σ? ~r ∈ List(Σ?)

branch(r; ~r) ∈ Σ?

r0 4 r1
leaf(r0) 4 leaf(r1)

r0 4 r1 ~r0 4 ~r1
branch(r0; ~r0) 4 branch(r1; ~r1)

R? : Σ? → Rule(J, J)
R?

∣∣∣∣ leaf(r) Z⇒ R(r)
branch(r; ~r) Z⇒ R∗(r); List(R∗)(~r)

Then the derivability closure of R is R? , 〈J, Σ?,R?〉 .

Theorem A.5. We have a refiner homomorphism i : R→ R?.

Proof. Define the action on rule names as i(r) , leaf(r); this
is clearly monotone. It suffices to show that the following
diagram commutes:

Σ Σ?

Rule(J, J)

i

R R?

r leaf(r)

R(r) = R(r)

i

R R?

Definition A.6 (Presentation). A presentation of a refiner
R , 〈J, Σ,R〉 : Ref is another refiner Rp , 〈Jp, Σp,Rp〉
together with a refiner homomorphism p : Rp → R such that
the induced judgment structure homomorphism p0 : Jp → J is
equipped with a section; that is, we have the following:

J Jp

J

s

1J
p0

Definition A.7 (Category of Presentations). We can capture
Definition A.6 in a category of presentations as the following
pullback situation, letting R , 〈J, Σ,R〉 and Pt J be the
category of split epimorphisms in J:

Pres(R) Ref/R

Pt J/J J/J

π1

i

Definition A.8 (Canonizing Presentation). A presentation p :
Rp → R is called canonizing when any construction that can
be effected in R can be effected by a unique rule in Rp. That
is to say, for any Γ 
 X : J ∆ and a : Γ ⇒ ∆, we have:

(∃r : Σ.R(r)(X) ≡ ∗ . a)⇒ (∃!r : Σp.Rp(r)(p−1(X)) ≡ ∗ . a)

E. Tactic Scripts and their Dynamics

Fixing a refiner R ≡ 〈J, Σ,R〉 : Ref, we can now define a
language of tactic scripts for R, letting r range over Σ:

t ::= r | 1 | t⊕ t | t? | t;m
m ::= �t | [t, . . . , t] | m?

In the above, the classic orelse tactical from LCF is imple-
mented by t1 ⊕ t2; as in Section IV-G we have decomposed
the standard LCF tacticals then and thenl into a combination of
multitacticals and the sequencing tactical: respectively t0;�t1
and t; [t0, . . . , tn].

T JtK : Tactic(J, J)
M JmK : Tactic(St(J),St(J))

T JrK = bR(r)c
T J1K = id

T Jt1 ⊕ t2K = T Jt1K⊕ T Jt2K
T Jt?K = repeat(T JtK)

T Jt;mK = seq(T JtK ,T JmK)

M J�tK = St{all(T JtK)}
M J[t0, . . . , tn]K = St{each(〈T Jt0K , . . . ,T JtnK〉)}

M Jm?K = repeat(M JmK)
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