
Pattern Matching with Dependent Types

Thierry Coquand�

Chalmers University

Preliminary version, June 1992

Introduction

This note deals with notation in type theory. The de�nition of a function by pattern matching
is by now common, and quite important in practice, in functional programming languages (see
for instance [1]). We try here to introduce such de�nitions by pattern matching in Martin-L�of's
logical framework.

1 Statement of the Problem

1.1 A Short Presentation of Martin-L�of's Logical Framework

For a more complete presentation of Martin-L�of's logical framework, which is implemented in
ALF, we refer to the book \Programming in Martin-L�of's Type Theory" [16], chapter 19 and
20. We recall that each type T is of the form (x1 : A1; : : : ; xn : An)A where A is Set or of the
form El(a): If A is of the form El(a); we say that T is an small type, and it is a large type

otherwise if A is Set: If a type of a term is of the form (x1 : A1; : : : ; xn : An)A; we say that n is
the arity of this term. An instance of a term u of arity n is a term de�nitionally equal to a
term of the form u(v1; : : : ; vn):

A context is a list of type declaration � = x1 : A1; : : : ; xn : An: As in [19], we relativize
all judgements of type theory with respect to a context. An interpretation or contextual

mapping between two contexts � = x1 : A1; : : : ; xn : An and � = y1 : B1; : : : ; ym : Bm is a
simulateneous substitution S = fy1 := v1; : : : ; ym := vmg such that

v1 : B1 (�); v2 : B2[v1] (�); : : : ; vm : Bm[v1; : : : ; vm�1] (�)1:

We write in this case S : � ! �: If M is an open expression in �; we write by simple
juxtaposition MS the result of the substitution S to M: Notice that if A is a type in � then
AS is a type in �; and if a : A (�); then aS : AS (�):

If T1 : �1 ! � and T2 : �2 ! �1 we write T2;T1 : �2 ! � the composition of T1 and T2:

Martin-L�of's logical framework is an open framework: the user can add new constants and
new computation rules.

�coquand@cs.chalmers.se
�If v� is de�nitionally equal to y�; we omit y� := v� in the writing of the interpretation; thus, fx := 0g is a

contextual mapping from y : N to x : N; y : N meaning fx := 0; y := yg.

66



For instance, we get the � sets by declaring the constants 2:

� : (X : Set; (X)Set)Set

pair : (X : Set; Y : (X)Set) (x : X;Y (x))�(X;Y )

split : (X : Set; Y : (X)Set) (Z : (�(X;Y ))Set)
((x : X; y : Y (x))Z(pair(X;Y; x; y)))

(w : �(X;Y ))
Z(w)

and asserting the equality (which can be read as a computation rule):

split(A;B;Z; z; pair(A;B; a; b)) = z(a; b) : Z(pair(A;B; x; y))

where

A : Set;

B : (A)Set;

Z : (�(A;B))Set

a : A;

b : B(a)

z : (x : A; y : B(x))Z(pair(A;B; a; b))

The usual cartesian product is de�ned by

A�B = �(A; (x)B) : Set [A : Set; B : Set]

The set of natural numbers is introduced by declaring the constants:

N : Set

0 : N

succ : (N)N

natrec : (C : (x : N)Set; C(0); (x : N; y : C(x)C(succ(x)); n : N)C(n)

and the equalities (which can be read as computation rules):

natrec(C; x; z; 0) = x : C(0)

natrec(C; x; z; succ(a)) = z(a; natrec(C; x; z; a))

where

C : (x : N)Set

x : C(0)

z : (x : N; y : C(x))C(succ(x))

The computation rules generate the de�nitional equality between terms.

�We allow ourselves to write in general A instead of El(A).

67



Quite important is the distinction between canonical and non-canonical constants. In
the examples above, �; pair N; 0 and succ are canonical constants, but split; natrec and � are
non canonical.

If the type of a canonical constant C is of the form (x1 : A1; : : : ; xn : An)Set; we say that C is
a connective. The meaning of a connective C is given by a set of canonical constants of types
of the form (y1 : B1; : : : ; ym : Bm)El(C(a1; : : : ; an)); that are called constructors of C: (In the
case of mutual inductive de�nitions, we can have a set of connectives that are simultaneously
de�ned by a set of canonical constants.) By extension, we consider also that connectives are
constructors of the type Set.

A canonical constant whose type is a small type is considered to be a primitive notion, that
is self-justifying. In the example above, 0 and succ are considered to be primitive notions, and
the canonical set N is de�ned by its set of constructors 0 and succ:

We say that a term is in constructor form i� it is de�nitionally equal to a term of the form
c(u1; : : : ; un) where c is a constructor of arity n: The constructor c is then uniquely determined.
We say that a term t is directly structurally smaller than a term u i�

� both u and v are of small types and of arity 0;

� u is of constructor form c(a1; : : : ; an) and t is de�nitionally equal to one aj of arity 0 or
one instance of one aj of arity > 0:

Being structurally smaller is de�ned by taking the transitive closure of this relation.

We use in an essential way the \no confusion" property of constructors. This covers two
properties. The �rst is that a de�nitional equality between two terms of the form a(u1; : : : ; un)
and b(v1; : : : ; vm) if a and b are two distinct constructors, cannot hold. The second is that, if c
is a constructor of type (x1 : A1; : : : ; xn : An)A; then the equality c(u1; : : : ; un) = c(v1; : : : ; vn) :
A[u1; : : : ; un] implies

u1 = v1 : A1; : : : ; un = vn : An[u1; : : : ; un�1]:

The non canonical constant � is explicitely de�ned in term of split:
The de�nitions of split and natrec are not explicit, and we refer to these constants as im-

plicitely de�ned constants. The meaning of implicitely de�ned constants is given by their
computation rules.

It is an important problem to give some criteria that ensure the correctness of the addition
of new constants and computation rules. We try here to analyse this problem using the pattern
matching notation introduced in functional languages (see for instance [1]).

1.2 Inductively de�ned connectives

We shall consider only connectives that are inductively de�ned The relation of being structurally
smaller is then expected to be well-founded. We shall take this well-foundness property as a
fundamental assumption on the constructors, without trying to analyse it further here. We
simply mention that the constructors presented in [7, 8] satisfy this well-foundness property.

Here are two counter-examples.

68



The set
V : Set;

with one constructor
� : ((A : Set)(A)A)V:

The polymorphic identity (A; x)x is of type (A : Set)(A)A; and hence the term �((A; x)x)
is of type V: This term is structurally smaller than itself. It follows that the relation of being
structurally smaller is not well-founded.

Likewise, the set
U : Set;

with one constructor
c : (Set)U;

has to be rejected. The reason is however more subtle than for the previous counter-example.
We notice �rst that, were this set accepted, so would be T : (U)Set by T (c(X)) = X : Set: We
could then introduce a set W : Set with only one constructor sup : (x : U)((T (x))W )W (which
is inductively de�ned given U; T ). But then sup(c(W ); (x)x) is structurally smaller than itself.

The �rst example, suggested by a remark of Per Martin-L�of, shows that the well-foundness
requirement on the relation of being structurally smaller is a stronger requirement than mere
normalisation. Indeed the set V is de�ned by a second-order quanti�cation, and it can be
shown, by the usual reducibility method, that its addition to inductively de�ned sets preserves
the normalisation property.

1.3 Some di�culties with the usual elimination schemas

It is known how to associate to any inductively de�ned connective an elimination constant,
together with its computation rules. This is described for instance in [6]. One can check that
all the examples of implicitely de�ned constants and computations rules described in [16] are
of this form. A �rst criteria for ensuring the correctness of the addition of new constants and
computation rules is to allow only the addition of such elimination constants. Experiments with
restricting the addition of implicitely de�ned constants to be elimination constants have shown
some drawbacks of this approach.

One �rst drawback is that we do not quite get the expected computational behaviour. If we
de�ne for instance add : (N;N)N by add(x; y) = natrec(y; x; (u; v)succ(v)); then add(x; succ(y))
reduces to succ(natrec(y; x; (u; v)succ(v)) and one needs to fold back this expression to get the
expected succ(add(x; y)):

One second drawback is readability. For instance, we want to consider an object such as
half : (N)N de�ned by

half(0) = 0; half(succ(0)) = 0; half(succ(succ(x))) = succ(half(x));

as given directly by these equations, rather than being given by an explicit de�nition which is
a \coding" of this object in term of natrec:

69



The second drawback is in practice quite important. The pattern matching notation is
essential in functional programming languages3.

The next anomaly is the necessity to consider higher \sets" for de�ning naturally a function
such as inf : (N;N)N: It is quite surprising that, in order to justify the equations

inf(0; y) = 0; inf(succ(x); 0) = 0; inf(succ(x); succ(y)) = succ(inf(x; y));

one needs to introduce the set of numerical functions.

Another problem appeared for inductively de�ned families. Given a connective with an
arity > 1; there are several possible elimination constants depending on what arguments are
considered to be parameters. For instance, there are two di�erent elimination constants for the
connective Id : (A : Set; x; y : A)Set of unique constructor re : (A : Set;x : A)Id(A; x; x): In this
case, it is yet unknown if these two elimination constants are equivalent.

The �rst and, in particular, second drawbacks are strong motivations for allowing the intro-
duction of implicitely de�ned constants de�ned by computation rules that are pattern matching
equations. This seems to solve in general the third anomaly. In an unexpected way, this seems
to have some bearing on the fourth problem, as we will try to explain below.

2 A General Presentation of Pattern Matching

There are two independent requirements for the correctness of the introduction of one implicitely
de�ned constant together with its computation rules. These requirements are only su�cient in
ensuring that the constant does de�ne a total function on the underlying datatype.

The �rst is the requirement that all de�nitions, that may be recursive, are well-founded.
The second is that the equations cover all possible cases of the arguments and do not

introduce ambiguities in the computation. We ensure this by imposing the de�nitions to be
exhaustive and mutually disjoint.

2.1 Well-founded De�nitions

A simple condition ensures the fact that all de�nitions are well-founded, and seem furthermore
su�cient in practice. Let n be the arity of the implicitely de�ned constant f to be de�ned.
The condition is that there exists an index i � n such that, for all equations f(u1; : : : ; un) = e;
and all recursive call f(v1; : : : ; vn) of f in e; the constant f does not occur in v1; : : : ; vn and the
term vi is structurally smaller than the term ui:

It would be possible to give a less restrictive condition, by considering instead a lexicographic
extension of the structural ordering. However, this restriction su�ces to recover the usual
elimination schemas. It is also quite simple to ensure that this condition holds.

Notice that this condition provides more general equations than the ones provided by the
usual primitive recursive schema. In the usual primitive recursive schema indeed, the parameters
cannot vary in recursive calls. This is not required here.

�The earliest, to our knowledge, mention of this notation appears in [2]. A proposal of extending functional
language with an \inductive" case expression, which hence ensures termination, is presented in [3].

70



For instance, this will justify directly the following kind of de�nitions of a a function f :
(N;N)N:

f(0;m) = g(m); f(succ(n);m) = h(n;m; f(n; k(n;m)));

where g : (N)N; h : (N;N;N)N and k : (N;N)N are previously de�ned functions. Notice that the
parameter m changes to k(n;m) in the recursive call of f: This can be done only using the set
of numerical function if we restrict ourselves the usual schema of primitive recursion (see [4]).

2.2 Covering

To analyse further the condition that the de�nitions are exhaustive and mutually disjoint, we
introduce one notion reminiscent of a notion used in Per Martin-L�of's representation of choice
sequences in type theory.

Let us motivate briey what follows. We want to add a new implicitely de�ned constant f
of type (x1 : A1; : : : ; xn : An)A; together with a set of computation rules. Let � be the context
x1 : A1; : : : ; xn : An of arguments of f: We only consider computation rules for f of the form

f(a1; : : : ; an) = e : A[a1; : : : ; an] (�);

with a1 : A1; : : : ; an : An[a1; : : : ; an�1]: We can think of a1; : : : ; an as de�ning a contextual
mapping S : � ! �; and this suggests to introduce the notation f(S) = e : AS (�) for such a
computation rule.

With this notation, the conditions on a system of computation rules f(Sj) = ej : ASj (�j)
will be expressed as conditions on a system of contextual mappings Sj : �j ! �: We want to
express that such a system de�nes a \partition of the space de�ned by �:"

We are going to analyse this problem in the same way that pattern matching in ordinary
functional languages is reduced to a succession of case expressions over a variable (see [1]).

We say �rst that a system of contextual mapping S1 : �1 ! �; : : : ; Sm : �m ! � over a
common context � = x1 : A1; : : : ; xn : An is an elementary covering of � i� there exists an
index i � n such that

� all terms xiSj : AiSj (�j); for j � m; are in constructor form,

� if S : � ! � is a contextual mapping such that xiS is in constructor form, then there
exists one and only one j � m and T : � ! �j such that S = T ;Sj :

This de�nition may look complicated but it is a possible way of specifying what is a case
expression over the ith argument. In the case of a context with only non dependent types, we
recover the usual notion of case expression as in [1]. In the general case however, we cannot
keep the same notion of patterns of [1] (as the examples below will show, we need for instance
to consider non linear patterns), and our abstract de�nition seems necessary.

An instance is the elementary covering de�ned by x = 0 and x = succ(y) (y : N) of the
context x : N:

A second example is the empty set of contextual maps over the context

� = p : Id(N; 0; succ(0)):

71



This is an elementary covering. Indeed, the only constructor of the connective Id is re; and
a term of the form re(A; u) cannot be of type Id(N; 0; succ(0)): Otherwise, we would have

Id(N; 0; succ(0)) = Id(A; u; u);

and hence, because Id is a constructor, 0 = u : N and succ(0) = u : N: But this implies
0 = succ(0) : N; which does not hold, because 0 and succ are di�erent constructors.

A more elaborate example is for the context

� = x; y : N; p; q : Id(N; x; y):

It can be checked that, if we de�ne

� = x : N; p : Id(N; x; x);

then the unique contextual mapping

fy := x; q := re(N; x)g : � ! �;

de�nes an elementary covering of �: Indeed, this follows from the fact that re is the only
constructor of Id and that if re(N; u) is of type Id(N; v; w); we have

Id(N; u; u) = Id(N; v; w) : Set;

and hence, since Id is a constructor, we have u = v : N and u = w : N:

We de�ne now what it means for a system of contextual mapping Si : �i ! � into a
common context � to be a covering of � :

� the identity interpretation � ! � is a covering of �;

� if Si : �i ! �; for i � p is an elementary covering of � and Tij : �ij ! �i; for j � qi; is
a covering of �i; then Tij ;Si : �ij ! � is a covering of �:

For instance x = 0; together with x = succ(0) and x = succ(succ(y)) (y : N) de�ne a
covering of x : N:

An example of covering of the context � = x : N; y : N is given by

� fx := 0g : (y : N) ! �;

� fx := succ(x1); y := 0g : (x1 : N) ! � and

� fx := succ(x1); y := succ(y1)g : (x1 : N; y1 : N) ! �:

If we take again our last example of an elementary covering, it can be checked that the
unique contextual mapping

fp := re(N; x)g : (x : N) ! �;

is an elementary covering of �: Hence, the unique contextual mapping

fy := x; p := re(N; x); q := re(N; x)g : (x : N) ! �;

72



is a covering of � = x; y : N; p; q : Id(N; x; y):

Following Per Martin-L�of's terminology, we call neighbourhood of a context any con-
textual map that is part of a covering of this context. The collection of neighbourhoods of a
covering of a context can be thought of as de�ning a partition of the \space" de�ned by this
context. This notion of neighbourhood corresponds to the notion of patterns used in functional
programming languages: in the case of a context with only non dependent types, we recover
exactly the notion of pattern matching described in [3, 1].

2.3 Su�cient Conditions For Correctness

The su�cient conditions ensuring the correctness of the addition of a new implicitely de�ned
constant f of type (x1 : A1; : : : ; xn : An)A; of argument context � = x1 : A1; : : : ; xn : An and of
computation rules of the form f(Sj) = ej : ASj (�j) are that:

� there is no nested occurence of f in ej ; and all recursive call of f are done on structurally
smaller arguments than the lefthandside arguments (which can be ensured as described
above),

� the system of contextual maps Sj : �j ! � is a covering of �:

2.4 Some comments on this method

The method followed here can be described as follows. When justifying a rule

f : (x1 : A1; : : : ; xn : An)A;

we analyse exhaustively the possible forms S of the arguments of f; and in each possible case
S; we build a term eS of type AS; using constructors and already de�ned constants.

We allow recursive calls of the constant we are de�ning, provided these calls are on struc-
turally smaller arguments.

Naturally associated to this justi�cation of an implicitely de�ned constant

f : (x1 : A1; : : : ; xn : An)

is the following computation rule for f: If a given argument (a1; : : : ; an) is an instance of the case
S; then the value of f(a1; : : : ; an) is the value of the corresponding instance of eS: Otherwise,
the argument list of f is not \instantiated enough", and f(a1; : : : ; an) cannot be head reduced.

2.5 Some Examples

The function inf : (N;N)N which is de�ned implicitely by:

inf(0; y) = 0; inf(succ(x); 0) = 0; inf(succ(x); succ(y)) = succ(inf(x; y)):

The recursive call is justi�ed by the fact that it is structurally smaller on the �rst (or the
second) argument.

It is standard how to reduce such a de�nition to the usual elimination rules over the type
N; by using the set of numerical functions.

73



By contrast, it is not clear how to represent the following computation rule in term of the
usual elimination rules4. We have seen that the unique contextual mapping

fy := x; p := re(N; x); q := re(N; x)g : (x : N) ! �;

is a covering of � = x; y : N; p; q : Id(N; x; y): It follows that it is correct to add a new constant
f : (x; y : N; p; q : Id(N; x; y))Id(Id(N; x; y); p; q) together with the computation rule

f(x; x; re(N; x); re(N; x)) = re(Id(N; x; x); re(N; x)) (x : N)

The next example still concerns the connective Id: As we said before, there are two possi-
ble elimination rules over this connective, depending on what arguments are considered to be
paramaters.

The �rst one, with the �rst argument is a parameter, is

F : (A : Set;C : (x; y : A; Id(A; x; y))Set;
d : (x : A)C(x; x; re(A; x)); a; b : A; c : Id(A; a; b))
C(a; b; c)

of computation rule

F (A;C; d; a; a; re(A; a)) = d(a) : C(a; a; re(A; a));

where
A : Set; C : (x; y : A; Id(A; x; y))Set; d : (x : A)C(x; x; re(A; x)); a : A:

The second one, with the �rst two arguments are parameters, is

G : (A : Set; a : A;C : (y : A; Id(A; a; y))Set;
d : C(a; re(A; a)); b : A; c : Id(A; a; b))
C(b; c)

of computation rule
G(A; a;C; d; a; re(A; a)) = d : C(a; re(A; a));

where
A : Set; a : A; C : (y : A; Id(A; a; y))Set; d : C(a; re(A; a)):

It can be checked that both constants satisfy the su�cient conditions for correctness given
above. Only the covering condition has to be checked, because there is no recursive call.

The last example is the well-founded set connective:

W : (A : Set; B : (A)Set)Set;

of unique constructor

sup : (A : Set; B : (A)Set; a : A; u : (B(a))W(A;B))W(A;B):

�This problem has been independently suggested by Thomas Streicher.

74



We can introduce the implicitely de�ned constant

wrec : (A : Set; B : (A)Set; C : (W(A;B))Set;
f : (a : A; u : (B(a))W(A;B); (x : B(a))C(u(x)))C(sup(A;B; u)); t : W(A;B))C(t)

with the computation rule

wrec(A;B;C; f; sup(A;B; a; u)) = f(a; u; (x)wrec(A;B;C; f; u(x)));

where

A : Set; B : (A)Set; C : (W(A;B))Set; f : (a : A; u : (B(a))W(A;B); (x : B(a))C(u(x))):

This is justi�ed since u(x) is structurally smaller than sup(A;B; a; u):

3 How to build coverings

3.1 Uni�cation Problem

If � is a context, A a type in �; and u; v two terms in � of type A; we de�ne a solution of the
uni�cation problem

u = v : A (�)

to be a �nite system of contextual mappings Sj : �j ! � such that

� for all j; we have uSj = vSj : ASj (�j); and

� if S : � ! � is a contextual mapping such that uS = vS : AS (�); then there exists one
and only one j and T : � ! �j such that T ;Sj = S:

For a description of the uni�cation problem with dependent types, see [18] and [9]. Since
this problem contains already the similar problem for simply typed lambda-calculus, described
in [13], we cannot expect to have a general algorithm to solve it. It is however possible to
describe a simple algorithm5, that has three possible outputs

� the system with no contextual mapping (this ensures that the uni�cation problem has no
solution),

� a system with exactly one contextual mapping (this ensures that the uni�cation problem
has a most general solution),

� the algorithm fails (which corresponds to a di�cult uni�cation problem).

�This algorithm is similar to the �rst-order uni�cation algorithm, using the fundamental fact that constructors
are one-to-one function.

75



3.2 Splitting Contexts

We give �rst a way to build elementary coverings, as it is implemented in ALF. We cannot ensure
that this generates all possible elementary coverings, but it is not clear yet how to extend this
algorithm, and whether such an extension is needed or not in practice.

Given a context
� = x1 : A1; : : : ; xn : An;

and an index i � n such that Ai is a small type, we describe an operation called splitting the

context � along i: This is an algorithm that tries to produce an elementary covering of � :

� if Ai is of arity > 0; or if Ai is not in constructor form, then the algorithm fails to produce
any covering,

� otherwise, Ai is of the form El(C(u1; : : : ; un)) and we can list all the constructors of the
connectives C: For each such constructor c of type (y1 : B1; : : : ; ym : Bm)El(C(v1; : : : ; vm));
we apply the previous uni�cation algorithm for the equation

C(u1; : : : ; un) = C(v1; : : : ; vn) : Set (x1 : A1; : : : ; xi�1 : Ai�1; y1 : B1; : : : ; ym : Bm);

and we collect all the solutions.

Given the fundamental \no confusion" property of constructor, this produces in case of
success an elementary covering of �:

3.3 General Coverings

General coverings can now be built interactively. Given a context �; the user chooses an index
i and tries to split � along i: If the system answers by giving an elementary covering, the user
can then choose to split some of the new produced contexts, and so on, until the user stops
eventually producing by composition a covering of �:

This interactive way of building coverings has been implemented in ALF, and seems in
practice to be quite convenient for the user in ensuring that no cases have been forgotten during
the de�nition of a function by pattern matching. This is in contrast with the usual presentation
in functional languages, where one should write the possible cases, and the compiler warns the
user that some cases have been forgotten.

The following is a semi-algorithm that checks whether or not a system of contextual map-
pings Sj : �j ! � is a covering6 (thanks to G. Huet).

First, the system with only the identity mapping is a covering. Otherwise, choose an index
i such that all xiSj are in constructor form. Then, if possible, split � along i: If the answer
is an elementary covering Ti : �i ! � of �; this induces a partition of the original system
Sj : �j ! � into a system of mappings �j ! �i: We then recursively check that each of these
systems is a covering.

�If we think of a covering as a collection of disjoint \pieces" that form a partition of a space, this semi-
algorithm solves a typical \puzzle" problem. We are given some \pieces" of a space (contextual mapping), and
we try to see whether or not they form a partition of this space.

76



4 Addition of Subsets

Kent Petersson, and independently A. Salvesen, suggested the following notion of subsets which
seems to �t nicely with the present notion of implicitely de�ned constants. We limit here
ourselves to the description of a simple example.

The meaning of a connective, such as N : Set; is given by the set of its constructors

0 : N; succ : (N)N:

It is quite natural to allow the introduction of (direct) subsets of N; that we get simply
by selecting a subset of this set of constructors. For instance, we can introduce the subset
ISZERO : Set with the only constructor 0; and the subset POS : Set with the only constructor
succ:

This notion of subsets �ts well with the present way of de�ning a function by pattern
matching, where one important step is to list the constructors of a given connective.

For instance, the unique computation rule de�nes then correctly an implicitely de�ned
function p : (POS)N:

p(succ(x1)) = x1 (x1 : N);

because the context x : POS is covered by the contextual mapping x = succ(x1) : N (x1 : N):

We can dually allow the introduction of (direct) supersets of N; that we get by adding new
constructors. Typically, the set of ordinals Ord : Set extends the set N by the addition of one
constructor

lim : ((N)Ord)Ord:

The following computation rules de�ne then correctly an implicitely de�ned function g :
(Ord)N:

g(0) = 0; g(succ(x)) = succ(x); g(lim(u)) = g(u(0)):

This de�nition is justi�ed since u(0) is structurally smaller than lim(u):

We can then de�ne a general inclusion relation between connectives, by taking the transitive
closure of the direct inclusion relation de�ned by the introduction of subsets and supersets. This
is a decidable relation.

As the last example shows, the addition of subsets and supersets introduces some overloading
facilities. These do not however compromise the decidability of the following problems:

� is the expression A a correct type in the context �?

� given a type A in the context �; is the expression a a correct term of type A in the context
�?

as we can convince ourselves by noting that the usual algorithm for these problems apply almost
without changes (using the decidability of the inclusion relation between connectives).

It is hoped that, with these new operations, one can represent rather faithfully the example
presented in [15].

A more elaborate notion of subtypings appears in [11].

77



Conclusion

As an experiment of using pattern matching, we have done in ALF the Gilbreath Trick, presented
by G. Huet last year [17], which is a non trivial inductive proof. This example shows well the
gain in readibility that brings the pattern matching notation. While doing other experiments,
it appeared that a quite useful extension of the system would be the introduction of case
expressions for proofs, where the case is over a term that may not be in variable form. More
generally, the goal seems to be to develop nice enough notations that will hopefully help the
analysis of inductive arguments.

The method we follow here has some similarities with Lars Halln�as notion of partial inductive
de�nitions (see [12, 10]), and with the way proofs are represented in Elf [17]. What we do seems
to correspond to a suggestion of [12] to use this notion as a \basis for a logical framework".
These connections have to be precised.

In the present analysis of pattern matching, a crucial rôle is played by the \no confusion"
property of constructors. In \Language and Philosophical Problems," [20], p. 163 - 167, S.
Stenlund emphasizes from a philosophical perspective the importance of this property.

From a proof-theoretic viewpoint, our treatment can be characterized as �xing the meanings
of the logical constants by the introduction rules. This possibility is discussed in [5], and
constrasted to the dual possibility, which is to �x the meanings of logical constants by the
elimination rules.

References

[1] Augustsson, L. \Compiling Pattern Matching." In Compiling Lazy Functional Languages
Part II, Ph. D. Thesis, Chalmers, 1987.

[2] Burstall, R.M. \Proving properties of programs by structural induction." Computer Jour-
nal 12(1), p. 41 { 48, 1969.

[3] Burstall, R.M. \Inductively De�ned Functions in Functional Programming Languages."
Journal of Computer and System Sciences, vol. 34, p. 409 { 421, 1987.

[4] Colson, L. \About Primitive Recursive Algorithms." LNCS 372, p. 194 { 206, 1989.

[5] Dummett, M. (1991) The Logical Basis of Metaphysics. Duckworth ed.

[6] Dybjer, P. \Inductive Sets and Families in Martin-L�of's Type Theory" Chalmers Report
62, also p. 280-306 in Logical Frameworks, eds. G. Huet and G. Plotkin, Cambridge Uni-
versity Press, 1991.

[7] Dybjer, P. \An inversion principle for Martin-L�of 's type theory." Proceedings of the
Workshop on Programming Logic in Bastad, May 1989, Programming Methodology Group
Report 54, p. 177-190.

[8] Dybjer, P. \Universes and a General Notion of Simultaneous Inductive-Recursive De�ni-
tion in Type Theory." in these proceedings.

78



[9] Elliott, C. M. \Higher-Order Uni�cation with Dependent Function Types." p. 121 { 136,
Proc. Rewriting Techniques and Applications

[10] Eriksson, L.H. \A Finitary Version of the Calculus of Partial Inductive De�nitions." SICS
research report, also to be published in LNCS, Proceedings of the Second Workshop on
Extensions of Logic Programming.

[11] Freeman, T. and Pfenning, F. \Re�nement Types for ML." to appear in ACM SIGPLAN
1991, Conference on Programming Language Design and Implementation.

[12] Halln�as, L. \Partial Inductive De�nitions." Theoretical Computer Science 87, 1991, p. 115
- 142.

[13] Huet, G. \A uni�cation algorithm for typed �-calculus." Theoretical Computer Science,
p. 27 { 57, 1975.

[14] Huet, G. \The Gilbreath Trick: A Case Study in Axiomatization and Proof Development
in the COQ Proof Assistant." Technical Report 1511, INRIA, September, 1991.

[15] Kahn, G. \Natural Semantics." INRIA Technical report, 601, 1987.

[16] Nordstr�om B., Petersson K., Smith. J. M. (1990), Programming in Martin-L�of Type The-

ory. Oxford Science Publications, Clarendon Press, Oxford.

[17] Pfenning, F. \Logic Programming in the LF logical framework" in G.Huet and G. Plotkin,
Logical Frameworks, Cambridge University Press.

[18] Pym, D. Proofs, Search and Computation in General Logic. Thesis, University of Edin-
burgh, November 1990.

[19] Ranta. A. (1988), \Constructing possible worlds," Mimeographed, University of Stock-
holm, to appear in Theoria.

[20] Stenlund, S. (1991), Language and Philosophical Problems. Routledge ed.

79


