
PROCEEDINGS OF THE 1992

WORKSHOP ON

TYPES FOR PROOFS AND PROGRAMS

B�astad

June 1992

Eds Bengt Nordstr�om, Kent Petersson and Gordon Plotkin

Contents

Foreword : 1

Workshop Programme : 2

List of Participants : 5

Demonstrations : 7

P. Aczel: Schematic Consequence : 8

P. Audebaud: CC

+

: an extension of the Calculus of Constructions with �xpoints : : : : : 18

F. Barbanera: Continuations and Simple Types: a Strong Normalization Result (ab-

stract) : 32

S. Berardi: Game theory and Program extraction (abstract) : 33

R. Burstall, James McKinna: Deliverables: a categorical approach to program devel-

opment in type theory : 34

T. Coquand: Pattern Matching with Dependent Types : 66

C. Coquand: A proof of normalization for simply typed lambda calculus written in ALF 80

V. Danos, L. Regnier: Virtual reduction (abstract) : 88

J. Despeyroux, A. Hirschowitz: Natural Semantics in Coq. First experiments : : : : : : : 89

P. Dybjer: Universes and a General Notion of Simultaneous Inductive-Recursive De�ni-

tion in Type Theory : 106

D. Fridlender: Formalizing Properties of Well-Quasi Ordered Sets in ALF : : : : : : : : : : : : : 115

V. Gaspes: Formal Proofs of Combinatorial Completeness : 125

V. Gaspes, J. M. Smith: Machine Checked Normalization Proofs for Typed Combinator

Calculi : 168

H. Geuvers: Inductive and Coinductive types with Iteration and Recursion : : : : : : : : : : : : 183

L. Helmink: Girard's Paradox in lambda U (abstract) : 208

H. Herbelin: Computable interpretation of cross-cuts procedure (abstract) : : : : : : : : : : : : : 209

B. Jutting: Typing in Pure Type Systems (abstract) : 210

J. Lipton: Relating Logic Programming and Propositions-as-Types: A Logical Compila-

tion : 211

F. Leclerc, C. Paulin-Mohring: Programming with Streams in Coq. A case study :

the Sieve of Eratosthenes : 231

i

Z. Luo: Compositional understanding of type theory (abstract) : 248

L. Magnusson: The new Implementation of ALF : 249

N. Mendler, P. Aczel: An implementation of Constructive Set Theory, in the Lego

system : 267

M. Parigot: lambda mu-calculus: an algorithmic interpretation of classical natural de-

duction (abstract) : 269

F. Pfenning: Teaching Theory of Programming Languages Using a Logical Framework:

an Experience Report (abstract) : 270

R. Pollack: Typechecking in Pure Type Systems : 271

D. Pym, G.Plotkin: A Relevant Analysis of Natural Deduction (abstract) : : : : : : : : : : : : : 289

C. Ra�alli: Fixed point and type systems (abstract) : 290

P. Rudnicki: An Overview of the MIZAR Project : 291

A. K. Simpson: Kripke Semantics for a Logical Framework : 313

B. Werner: A Normalization Proof for an Impredicative Type System with Large Elimi-

nation over Integers : 341

ii

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Types

and

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Programs

Foreword

This document is the preliminary proceedings of the 1992 Workshop on Types for Proofs

and Programs held at Hotel Riviera in B�astad, Sweden, from the 8th to the 12th of June 1992.

The workshop was organized by Peter Dybjer, Bengt Nordstr�om, Kent Petersson and Jan Smith

from G�oteborg together with Rod Burstall and Claire Jones from Edinburgh. The workshop

was attended by 55 people.

Local arrangements were looked after by Marie Larsson et al and Lennart Augustsson and

Per Lundgren took care of the computer equipment.

These preliminary proceedings have been collected from L

a

T

E

X sources, using electronic mail

and spliced together. They comprise 18 of the 31 papers presented at the meeting (11 abstracts

are also included).

This document may be obtained by anonymous ftp from Chalmers University of Technol-

ogy (compressed �le pub/baastad/proc.ps.Z on animal.cs.chalmers.se login name \anony-

mous" and your ordinary name as password).

1

Workshop Programme: Types for Proofs and Programs

Sunday, June 7th

8.00pm Dinner

Monday, June 8th

9.00{10.00am Per Martin-L�of

Does denotational semantics have any role to play in type theory?

10.00{10.30am Peter Aczel

A LEGO implementation of constructive set theory

10.30{11.15am Co�ee Break

11.15{12.00am Zhaohui Luo

Compositional understanding of type theory

12.00{12.25pm Veronica Gaspes and Jan Smith

Machine checked normalization proofs for typed combinator calculi

12.25{12.50pm Veronica Gaspes

Formal proofs of combinatorial completeness

12.50{3.00pm Lunch

3.00{3.45pm Vincent Danos and Laurent Regnier

Virtual reduction

3.45{4.10pm Christine Paulin-Mohring

Representation of speci�cations and programs involving streams in

the Calculus of Inductive Constructions

4.10{4.35pm Lena Magnusson

The new implementation of ALF

4.35{5.15pm Co�ee Break

5.15{6.00pm Demo Session

8.00pm Dinner

2

Tuesday, June 9th

9.00{9.45am Thierry Coquand

Contexts, substitutions and pattern-matching

9.45{10.15am Joelle Despeyroux

Natural semantics in Coq, �rst experiments

10.15{10.30am Piotr Rudnicki

Mizar

10.30{11.15am Co�ee Break

11.15{11.40am Leen Helmink

Girard's paradox in lambda-U

11.40{12.50pm DEMO SESSION

12.50{3.00pm Lunch

3.00{3.45pm Benjamin Werner

Strong normalization of lambda-calculi with types de�ned by

recursion

3.45{4.30pm James McKinna

Deliverables: an approach to program development

4.30{5.15pm Co�ee break

5.15{6.00pm PANEL SESSION

6.00{7.30pm Site leaders meeting

7.30pm Dinner

9.00pm Concert (in B�astad Church)

Wednesday, June 10th

9.00{9.45am Michel Parigot

��-calculus: an algorithmic interpretation of classical natural

deduction

9.45{10.30am Hugo Herbelin

Computable interpretation of cross-cuts procedure

10.30{11.15am Co�ee Break

11.15{12.00am Stefano Berardi

Game theory and program extraction

12.00{12.25pm Franco Barbanera

Continuations and simple types: A strong normalisation result

12.25{12.50pm Thomas Streicher

Truly intensional models for type theory arising from modi�ed re-

alizability

12.50{2.45pm Lunch

2.45pm FREE AFTERNOON

Bus leaves for walks (various distances) to Hovs hallar

7.00pm Dinner in Torekov (bus from Hovs hallar at 6.00pm)

3

Thursday, June 11th

9.00{9.45am Peter Aczel

Schematic consequence

9.45{10.30am Randy Pollack

Type checking in Pure Type Systems

10.30{11.15am Co�ee Break

11.15{12.00pm Bert Jutting

Typing in Pure Type Systems

12.00{12.45pm Alex Simpson

Kripke semantics for a logical framework

12.45{3.00pm Lunch

3.00{3.25pm Catarina Coquand

The proof of normalisation for simply typed lambda calculus writ-

ten in ALF

3.25{3.50pm Daniel Fridlender

Formalizing proofs of properties of well-quasi-orders

3.50{4.35pm Frank Pfenning

Teaching theory of programming languages using a logical frame-

work: an experience report

4.35{5.15pm Co�ee Break

5.15{6.00pm Christophe Ra�alli

Fixed point and type systems

8.00pm Dinner

Friday, June 12th

9.00{10.00am Jim Lipton

Logic programming and propositions as types: A realizability in-

terpretation of declarative programs

10.00{10.30am David Pym and Gordon Plotkin

A relevant analysis of natural deduction

10.30{11.15am Co�ee Break

11.15{12.00am Phillipe Audebaud

An extension of the calculus of constructions using �xpoints

12.00{12.45pm Peter Dybjer

Simultaneous inductive-recursive de�nitions in type theory

12.45{3.00pm Lunch

4

List of Participants

INRIA, Rocquencourt

Samuel Boutin boutin@margaux.inria.fr

Hugo Herbelin herbelin@margaux.inria.fr

G�erard Huet huet@margaux.inria.fr

Chet Murthy murthy@margaux.inria.fr

Benjamin Werner werner@margaux.inria.fr

Lyon

Catherine Parent parent@lip.ens-lyon.fr

Christine Paulin cpaulin@lip.ens-lyon.fr

Eindhoven

Leen Helmink helmink@prl.philips.nl

Erik Poll erik@win.tue.nl

Edinburgh/Oxford

Rod Burstall rb@dcs.ed.ac.uk

Philippa Gardner pag@dcs.ed.ac.uk

Claire Jones ccmj@dcs.ed.ac.uk

Zhaohui Luo zl@dcs.ed.ac.uk

Savi Maharaj svm@dcs.ed.ac.uk

James McKinna jhm@dcs.ed.ac.uk

Randy Pollack rap@dcs.ed.ac.uk

David Pym dpym@dcs.ed.ac.uk

Alex Simpson als@dcs.ed.ac.uk

Manchester

Peter Aczel petera@cs.man.ac.uk

Nijmegen

Henk Barendregt henk@cs.kun.nl

Bert van Benthem Jutting

Mark Ruys markr@cs.kun.nl

5

Paris 7

Vincent Danos danos@logique.jussieu.fr

Jean-Louis Krivine krivine@logique.jussieu.fr

Pascal Manoury eleph@logique.jussieu.fr

Patrick Meche meche@logique.jussieu.fr

Michel Parigot parigot@logique.jussieu.fr

Christophe Ra�alli raffalli@logique.jussieu.fr

Laurent Regnier regnier@logique.jussieu.fr

Marianne Simonot simonot@logique.jussieu.fr

Sophia-Antipolis

Jo�elle Despeyroux jd@sophia.inria.fr

Torino

Stefano Berardi stefano@di.unito.it

Franco Barbanera barba@di.unito.it

Pietro Di Gianantonio digianant@uduniv.cineca.it

G�oteborg

Lennart Augustsson augustss@cs.chalmers.se

Jan Cederqvist ceder@cs.chalmers.se

Catarina Coquand catarina@cs.chalmers.se

Thierry Coquand coquand@cs.chalmers.se

Peter Dybjer peterd@cs.chalmers.se

Veronica Gaspes vero@cs.chalmers.se

Michael Hedberg hedberg@cs.chalmers.se

Daniel Friedlender frito@cs.chalmers.se

Lena Magnusson lena@cs.chalmers.se

Bengt Nordstr�om bengt@cs.chalmers.se

Kent Petersson kentp@cs.chalmers.se

Jan Smith smith@cs.chalmers.se

Nora Szasz nora@cs.chalmers.se

Alvaro Tasistro tato@cs.chalmers.se

Others

Jean-Paul Audebaud paudebau@lip.ens-lyon.fr

Eduardo Gimenez gimenez@incouy.edu.uy

Jim Lipton lipton@saul.cis.upenn.edu

Per Martin-L�of Barnhusgatan 4, 111 23 Stockholm, Sweden

Frank Pfenning Frank.Pfenning@cs.cmu.edu

Piotr Rudnicki piotr@cs.ualberta.ca

Anne Salvesen abs@ifi.uio.no

Thomas Streicher streicher@informatik.uni-muenchen.de

6

Demonstrations

In the demo-sessions the following systems were shown:

� ALF-2 Lennart Augustsson and Thierry Coquand,

� Coq Catherine Parent and Benjamin Werner,

� Elf Frank Pfenning.

� Lego Randy Pollack.

7

Schematic Consequence

�

Peter Aczel

Manchester University

August 1992

Abstract

The aim of this note is �rst to set up some general theory for discussing di�erent aspects

of the notion of a logic and then to draw attention to the schematic aspects of logic and

suggest a way of capturing this aspect without making any commitment to the kind of

syntax a logic should have.

Introduction

Nowadays we are well aware that there are many di�erent logics. There are computer systems

which are meant to be used to implement many logics. But there is no generally accepted account

of what a logic is. Perhaps this is as it should be. We need imprecision in our vocabulary to

mirror the
exible imprecision of our thinking. There are a number of related phrases that seem

to have a similar imprecision; e.g. formal system, language, axiom system, theory, deductive

system, logical system, etc... These are sometimes given technical meanings, often without

adequate consideration of the informal notions.

When a logic has been implemented in a computer system the logic has been represented

in the logical framework that the computer system uses. The logical framework will involve a

particular approach to syntax, which may di�er from the approach to syntax taken when the

logic was �rst presented. This means that in order to represent the logic, as �rst presented, in

the framework a certain amount of coding may be needed and the question will arise whether

the logic as �rst presented is indeed the logic that has been represented in the framework. To

make this question precise it is necessary to have a notion of a logic that abstracts away from

particular approaches to syntactic presentation.

So we want to have a formal abstract de�nition of the notion "a logic". It is probable that

there is no single notion to be captured but rather several related notions hiding under the

single phrase. Nevertheless it would seem to be very worthwhile to try to analyse the situation

and come up with some technical de�nitions that can be used to capture the various facets of

the notion(s) of a logic. Of course there has been previous work on this topic. An important

ingredient in all recent work is the notion of a consequence relation. This is essentially due to

Tarski who developed a fairly general theory of consequence operators and deductive systems

in the 1920s. Dana Scott has more recently focused on the notion of a consequence relation.

�

This paper is incomplete and reports on work in progress. An earlier version was called The Notion of a

Logic and was based on a talk given at the workshop on \Deductive Systems" at Oberwolfach in May 1991. My

attention was drawn to the adjoint situations in the topic by a question after my talk. This work was partially

supported by the Esprit Basic Research Action `Logical Frameworks' and an SERC research Fellowship.

8

Another important development was Barwise's abstract model theory ([Barwise 1974], which

gave a model theoretic approach to a general class of logics, those based on classical �rst

order semantic structures. A further stage of abstraction gives rise to Goguen and Burstall's

notion of an institution, ([Goguen and Burstall, 1990]). This level of abstraction seems to

be needed to capture the variety of logics that seem to be of relevence in computer science

and linguistics. The notion of an institution only focuses on the semantic aspect of logical

consequence. Meseguer, in [Meseguer, 1989], has given a de�nition of a logic which uses an

institution to capture the semantic aspect but also uses an entailment system to capture the

operational aspect. An entailment system is roughly a system of consequence relations indexed

by signatures. In Meseguer's notion of a logic the consequence relations of the entailment system

are required to be sound with respect to the semantic consequence relations of the institution.

The notion of an entailment system has also been used in [Harper, Sannella and Tarlecki, 1990?],

where they called it a logical system or logic.

At this point we should also mention the Edinburgh Logical Framework ([Harper, Honsell

and Plotkin, 1987]) and other systems playing similar roles in connection with computer sys-

tems for implementing logics. These logical frameworks provide an environment in which the

operational, non-semantic aspects of a logic can be speci�ed, provided that a syntax for the

logic is acceptable to the framework or can be made acceptable without essentially changing

the logic. One approach to the notion of a logic might be to choose a logical framework and

require that the operational part of a logic must have a representation in the logical framework.

What are the key issues in connection with the notion(s) of a logic? We list some of them.

1. Logic is concerned with what follows from what; i.e. with logical consequence.

2. Logic is generally applicable; i.e. a logic should have a range of possible applications so

that if A follows logically from B in a logic then in every application (or interpretation or

context) where A is true B is true.

3. Logic is schematic; e.g. the rule of modus ponens, that B follows logically from A and

A ! B, is not expressed in the language of any particular application of the logic, but

in a language of schematic expressions involving parameters which can be instantiated in

any application language.

In the next section below we give some de�nitions relevent to the �rst issue. We focus on

�nitary traditional consequence. More general notions are of interest. See for example [Avron,

1991]. But the more restricted and familiar notion of a consequence relation will be good

enough for our present purposes. We also introduce several other notions which are relevent in

connection with the formation of consequence relations either operationally from an axiomatic

system or semantically from a semantic system. Both methods of formation can be seen to use

the notion of a truth system. We also de�ne a hybrid notion incorporating a semantic system

with an axiomatic system that is sound.

We address the second issue above by indexing the above notions in section 3. Finally we

address the third and less familiar issue in section 4. There is a good deal more to be said

on these topics and we hope to produce an expanded version of this paper. In section 2 we

make a slight detour from the main topic to consider the connections with Scott's notion of an

information system and domains.

9

1 Finitary Traditional Consequence

We describe �ve categories relevent to an abstract theory of �nitary traditional consequence

and study the relationships between them.

Axiomatic systems

An axiomatic system (A;�) consists of a set A and a set � � (finA) � A, where finA is the

set of �nite subsets of A. Axiomatic systems form a category AS. A map � : (A;�)! (A

0

;�

0

)

of AS is a function � : A! A

0

such that

(�; �) 2 �) (��; ��) 2 �

where �� = f�
 j
 2 �g if � 2 FinA.

We think of an axiomatic system as specifying a notion of proof whose inference steps have

the form

1

� � �

n

�

where (f

1

; : : : ;

n

g; �) 2 �. Here of course

1

; : : : ;

n

are the premises of the inference step and

� is the conclusion.

Consequence Relations

A consequence relation (A;`) is an axiomatic system satisfying the following.

re
exivity : f�g ` �

monotonicity : � ` �) � [f'g ` �

transitivity : � ` ' and � [f'g ` �) � ` �

Consequence relations form a full subcategory CR of AS.

Proposition 1 The inclusion functor CR ,! AS has a left adjoint AS ! CR which associates

with each axiomatic system (A;�) the consequence relation (A;`

�

) generated by (A;�); i.e. `

�

is the least relation including � such that (A;`

�

) is a consequence relation, or alternatively

� `

�

� () � is in the smallest �-closed set including �;

where X � A is �-closed if whenever (�; �) 2 �

� � X) � 2 X:

Truth Systems

A truth system (A;M) consists of a set A and a set M � powA, where powA is the set of all

subsets of A. Truth systems form a category TS, where a map � : (A;M)! (A

0

;M

0

) of TS is

a function � : A! A

0

such that

X 2M

0

) �

�1

X 2M:

With each axiomatic system (A;�) we may associate the truth system (A; cl(�)) where cl(�)

is the set of �-closed subsets of A.

10

Proposition 2 (A;�) 7! (A; cl(�)) can be made into a functor AS ! TS which factorises

AS ! CR ! TS. Moreover CR ! TS has a right adjoint TS ! CR which associates with

each truth system (A;M) the consequence relation (A; j=

M

) where

� j=

M

� () (8X 2M)[� � X) � 2 X]:

Closure Systems

A closure system is a truth system (A;M) such that

1.

T

X 2M for all X �M (where we take

T

X = A when X = ;),

2.

S

X 2M for all directed X �M .

Let CS be the full subcategory of TS whose objects are the closure systems.

Proposition 3 The adjoint functors CR ! TS and TS ! CR have factorisations CR !

CS ,! TS and TS ! CS ! CR which are also adjoints. Moreover the functors CR ! CS

and CS ! CR are inverses of each other, so that CR

�

=

CS.

Semantical Systems

A semantical system (A;Mod; j=) consists of a set A, a class Mod and a class relation j= that is a

subclass of Mod�A. Semantical systems form a category SS, where a map (�

1

; �

2

) : (A;Mod; j=

) ! (A

0

;Mod

0

; j=

0

) of SS consists of a function �

1

: A ! A

0

and a function �

2

: Mod

0

! Mod

such that for m

0

2Mod

0

; � 2 A

(�

2

m

0

) j= � () m

0

j=

0

(�

1

�):

Each truth system (A;M) determines a semantical system (A;M;3

M

) where m 3

M

� () � 2

m 2M . This gives a functor TS ! SS.

Proposition 4 The functor TS ! SS has a right adjoint SS ! TS which associates with

each semantical system (A;Mod; j=) the truth system

(A; fth(m) j m 2Modg)

where, for each m 2Mod,

th(m) = f� 2 A j m j= �g:

Note that the composition SS ! TS ! CR gives a functor SS ! CR that sends each

semantical system (A;Mod; j=) to the consequence relation (A; j�) where

� j� � () (8m 2Mod)[(8
 2 �)(m j=
)) m j= �]:

Axiomatic system with semantics

We now describe a hybrid notion. An axiomatic system with semantics (A;�;Mod; j=) consists

of an axiomatic system (A;�) and a semantical system (A;Mod; j=) such that

soundness : � `

�

�) � j� �:

The axiomatic system with semantics is complete if the converse holds; i.e.

� j� �) � `

�

�:

Axiomatic systems with semantics form a category ASS in the obvious way.

11

Summary

We have de�ned the four categories AS;CR; TS; SS with functors

AS ! CR

�

=

CS ,! TS ! SS

which have right adjoints

AS - CR

�

=

CS TS SS:

There is also the hybrid category ASS with the obvious forgetfull functors ASS ! AS and

ASS ! SS. All these categories and functors are \over the category of sets"; i.e. for each of

these categories C there is a forgetful functor C ! Sets and for each of the above functors

C! C

0

the diagram

C �! C

0

& .

Sets

commutes.

Lindenbaum Algebras

A more abstract algebraic treatment of traditional consequence will work with (meet) semilat-

tices and the Lindenbaum algebra construction. Consider the following natural way to make a

(meet) semilattice (A;�) into a consequence relation (A;`

�

), where

C `

�

a ,

^

C � a:

This gives rise to a functor from the category SL of semilattices to the category CR. We can

characterise the Lindenbaum algebra construction as a left adjoint CR ! SL to this functor

that maps (A;`) to (Q;�) where Q is a quotient of finA with respect to the equivalence relation

� given by

C

1

� C

2

, for all a 2 A C

1

` a i� C

2

` a

and � is the partial ordering on Q given by

[C

1

] � [C

2

] , C

1

` a for all a 2 C

2

:

2 Consequence Relations and Scott's Information Systems

This section is really a detour from the main topic. As in the previous section the categories

and functors that we will consider are all \over the category of sets".

There is an interesting relationship between the notion of a consequence relation and Scott's

notion of an information system, (see [Scott, 1982]). This gives rise to a relationship between

closure systems and Scott domains. Essentially a Scott Information System can be viewed as a

consequence relation (A;`) and a consistency notion Con for it; i.e. Con � finA such that for

all C 2 finA; a 2 A

1. C [fag 2 Con) C 2 Con,

2. C 6` a) C 2 Con,

12

3. C ` a and C 2 Con) C [fag 2 Con.

Given such a consistency notion we can call a `-closed set X � A consistent if finX � Con.

Then the set Cl(A;`; Con) = fX 2 cl(`) j X is consistentg of `elements' of the information

system form a Scott domain, when partially ordered by the subset relation. It is a standard

fact that every Scott domain is isomorphic to one of these.

We call a truth system (A;M) a weak closure system if it satis�es the two conditions of a

closure system, except that, in condition 1,

T

X 2 M need only hold for non-empty X � M .

So a closure system is simply a weak closure system (A;M) such that A 2 M . We may form

the category wCS which is the full subcategory of CS consisting of weak closure systems. Also

let CRC be the category whose objects are triples (A;`; Con) where (A;`) is a consequence

relation and Con is a consistency notion for it. The maps � : (A;`; Con) ! (A

0

;`

0

; Con

0

) in

this category are the maps � : (A;`)! (A

0

;`

0

) in CR such that for all X 2 finA

�X 2 Con

0

) X 2 Con:

Then we get an isomorphism

CRC

�

=

wCS

given by mapping (A `; Con) in CRC to (A;Cl(A;`; Con)) in wCS. The inverse of this

isomorphism maps (A;M) in wCS to (A;`

M

; Con

M

) in CRC, where the map (A;M) 7! (A;`

M

)

is given by the functor wCS ,! TS ! CR and

Con

M

= fC 2 finA j C � X for some X 2Mg:

Given a consequence relation (A `), there are two extreme ways to form a consistency

notion Con for it. The maximum consistency notion is given by Con = finA. The minimum

consistency notion is given by

Con = Con(A;`) = fX 2 finA j X 6` a for some a 2 Ag:

Of course in some cases the two consistency notions may coincide so that the consequence

relation has a unique consistency notion. But in familiar cases we expect the two notions to

be distinct (e.g. in a logic with negation we might expect that fb;:bg ` a for all a so that if

X = fb;:bg then X is in finA, but not in Con(A;`)). Can there be other consistency notions

for a given consequence relation? I was initially surprised to observe that:

Proposition 5 For any consequence relation the two extreme consistency notions are the only

possible ones.

To see why this is so let Con be a consistency notion for the consequence relation (A;`) which

is di�erent from Con(A;`). It follows that there is some C 2 Con such that C ` a for all

a 2 A. We want to show that any X 2 finA is in Con. So let X = fa

1

; : : : ; a

n

g 2 finA. As

C ` a we get that C [fa

1

g 2 Con. As C ` a

2

we get C [fa

1

g ` a

2

so that C [fa

1

; a

2

g 2 Con.

Continuing in this way we eventually get that C [X 2 Con. As X � C [X it follows that

X 2 Con.

The two ways to construct consistency notions give rise to functors in a natural way, though

for the second way a little care is needed. In the �rst case we have the functor CR ! CRC

that maps (A;`) to (A;`; f inA).

13

Proposition 6 The above functor CR! CRC is left adjoint to the forgetfull functor CRC !

CR that maps (A;`; Con) to (A;`).

For the other consistency notion construction we need to restrict to surjective functions. Let CR

0

be the subcategory of CR having the same objects as CR but having as maps only those maps

of CR that are surjective as functions. Similarily we may de�ne categories CRC

0

; CS

0

; etc : : :.

The above functor CR! CRC can be restricted to give a functor CR

0

! CRC

0

which is still a

left adjoint to the forgetful functor on CRC

0

. But we also have another functor CR

0

! CRC

0

that maps (A;`) to (A;`; Con(A;`)). It is not possible to extend this to CR.

Proposition 7 The latter functor CR

0

! CRC

0

is right adjoint to the forgetful functor

CRC

0

! CR

0

.

So we get a sequence of three functors between CR

0

and CRC

0

where the �rst functor in each

successive pair is left adjoint to the second.

CR

0

! CRC

0

(A;`) 7! (A;`; f inA)

CRC

0

! CR

0

(A;`; Con) 7! (A;`)

CR

0

! CRC

0

(A;`; Con(A;`)) 7! (A;`)

The isomorphisms

CR

�

=

CS and CRC

�

=

wCS

induce isomorphisms

CR

0

�

=

CS

0

and CRC

0

�

=

wCS

0

and hence give rise to a corresponding sequence of functors between CS

0

and wCS

0

.

CS

0

,! wCS

0

(A;M) 7! (A;M)

wCS

0

! CS

0

(A;M) 7! (A;M [fAg)

CS

0

! wCS

0

(A;M) 7! (A;M):

where M is M�fAg if this is a weak closure system and is M otherwise.

There is a close connection between the collections of weak closure systems and Scott do-

mains. But it is too strong to assert that the category Scott of Scott domains and continuous

maps is equivalent to the category wCS. We do get an equivalence if we restrict to categories of

isomorphisms. To get a better result we can consider the contravariant functor wCS ! Scott

op

which, on objects, maps (A;M) to (A;�

M

), where �

M

is the subset relation on M , and, on

maps, assigns to each � : (A;M) ! (A

0

;M

0

) of wCS the inverse image continuous function

�

�1

: (M;�

M

) ! (M

0

;�

M

0

). This functor is an equivalence if Scott is modi�ed so that only

certain continuous functions are allowed as maps.

3 Indexed Consequence

One aspect of a logic is that there is a notion of signature, so that associated with each signature

is a set of sentences that can be formed with the signature. So we postulate a category SIG over

the category of sets, the functor SIG! Sets being the functor associating with each signature

� of SIG the set sent(�) of sentences of �.

As an example �rst order logic could use the category SIG whose objects consist of sets

of individual constant symbols and n-place function and predicate symbols for n > 0. The

14

signature maps of SIG are functions from symbols to symbols that map individual constants to

individual constants, n-place function symbols to n-place function symbols and n-place predicate

symbols to n-place predicate symbols. Now sent(�) can be the set of �rst order sentences formed

in the standard way using the symbols of �, logical symbols and individual variables.

Given SIG and SIG ! Set we get SIG-indexed notions as functors from SIG over the

category Set. For example a SIG-indexed consequence relation is a functor SIG ! CR over

Set. This is Meseguer's notion of an entailment system and also the Harper, Sanella and Tarlecki

notion of a logical system.

A version of the notion of an institution is a category SIG over Set together with a SIG-

indexed semantical system SIG! SS over Set.

Let CRS be the full subcategory of ASS consisting of (A;`;Mod; j=) in ASS where (A;`)

is in CR. Now Meseguer's notion of a logic is a category SIG over Set together with a SIG-

indexed consequence relation with semantics SIG! CRS over Set.

4 Schematic Consequence

We wish to capture the schematic aspects of logic. A logic is axiomatised by giving schematic

axioms and rules of inference which can be instantiated to get inference steps. Instantiations

may themselves be schematic so that we are interested in the notion of a derived rule of inference

obtained by composing instances of the axioms and rules. (Note: We need only focus on rules,

as an axiom is simply a rule with no premises.)

Substitution

We want a syntax free way of talking about instantiation. We are led to focus on substitution.

We will assume that the substitutions on a set A are functions s : A! A that form a submonoid

of (A

A

; id

A

; �). Here A

A

is the set of all functions A! A, id

A

: A! A is the identity function

of A and if s; s

0

: A ! A then s � s

0

: A ! A is their composition. If Sub is such a submonoid

then we call (A;Sub) a concrete monoid. The instances of a 2 A are the elements of A of the

form sa for s 2 Sub.

Concrete monoids form a category CM where a map (�

1

; �

2

) : (A;Sub)! (A

0

; Sub

0

) consists

of a function �

1

: A ! A

0

and a monoid homomorphism �

2

: Sub ! Sub

0

such that for all

a 2 A; s 2 Sub

�

1

(sa) = (�

2

s)(�

1

a):

We can now give schematic versions of axiomatic systems, consequence relations etc.

Schematic Axiomatic Systems

A schematic axiomatic system (A;Sub;�) consists of a concrete monoid (A;Sub) and an ax-

iomatic system (A;�). In an obvious way we get a category SAS of schematic axiomatic

system.

Schematic Consequence Relations

A schematic consequence relation (A;Sub;`) is a schematic axiomatic system such that (A;`)

is a consequence relation and for all s 2 Sub

15

s : (A;`)! (A;`) in CR;

i.e.

� ` �) s� ` s�:

We can now let SCR be the full subcategory of SAS consisting of schematic consequence

relations.

Proposition 8 The inclusion functor SCR ,! SAS has a left adjoint SAS ! SCR which

associates with each schematic axiomatic system (A;Sub;�) the schematic consequence relation

(A;Sub;`

�

) generated by (A;Sub;�); i.e. the least relation including � such that (A;Sub;`

�

)

is a schematic consequence relation, or alternatively

� `

�

� () � is in the smallest Sub�-closed set including �

where

Sub� = f(s�; s�) j s 2 Sub and (�; �) 2 �g:

If � `

�

� then (�; �) is a derived rule of � (relative to (A;Sub)).

Schematic Truth Systems

A schematic truth system (A;Sub;M) consists of a concrete monoid (A;Sub) and a truth system

(A;M) such that s : (A;M)! (A;M) in TS for all s 2 Sub; i.e.

X 2M) s

�1

X 2M

for all s 2 Sub.

STS is the category of schematic truth systems, with the obvious notion of map. With

each schematic axiomatic system (A;Sub;�) we may associate the schematic truth system

(A;Sub; cl(Sub�)).

Proposition 9 (A;Sub;�) 7! (A;Sub; cl(Sub�)) can be made into a functor SAS ! STS

which factorises SAS ! SCR ! STS. Moreover SCR ! STS has a right adjoint STS !

SCR which associates with each schematic truth system (A;Sub;M) the consequence relation

(A;Sub; j=

M

) where j=

M

is obtained from M as in TS ! CR.

References

[Avron, 1991] Axiomatic Systems, Deduction and Implication, Tech. Report 203/91,

Institute of Computer Sciences, Tel-Aviv University.

[Barwise, 1974] Axioms for Abstract Model Theory, Annals of Mathematical Logic, 7

(1974) 221-265.

[Goguen and Burstall, 1990] Institutions: Abstract Model Theory for Speci�cation and

Programming, Edinburgh LFCS Report 90-106.

16

[Harper, Sannella and Tarlecki, 1989] Structure and Representation in LF, A version

appeared in the proceedings of the 4th LICS meeting, 1989.

[Harper, Honsell and Plotkin, 1987] A Framework for de�ning logics In Proc. LICS 87.

[Meseguer,1989] General Logics, Proc. Logic Colloquium '87, edited by H.D. Ebbinghaus et

al., North Holland, 1989.

[Scott, 1982] Domains for Denotational Semantics, in the proceedings of ICALP, Springer

Lecture Notes in Computer Science 140 (1982).

17

CC

+

: an extension of the Calculus of Constructions

with �xpoints

Philippe Audebaud

LaBRI - Universit�e Bordeaux I - FRANCE

email : audebaud@labri.greco-prog.fr, paudebau@lip.ens-lyon.fr

August `92

Abstract

We follow an original idea suggested by Constable and Smith [CoSm87, CoSm88] pro-

viding a way for reasoning about non terminating computations in a typed framework. This

work has been initiated within NuPrl by Smith [Smi88]. However its adaptation to the Cal-

culus of Constructions (CC) has showed to be easy. We get a conservative extension of CC,

denoted CC

+

, where strong normalisation for �-reductions is preserved. We recover the alter-

nate \recursive" coding for integers (already) introduced in AF2 by Parigot [Par88, Par92] ;

thus the computational behaviour for the codes of integers is improved. Moreover, as ex-

pected, all partial recursive functions are de�nable. The proposition asserting that every

term satis�es the principle of induction remains with no proof but trivial ones. All these

results easily generalize to all the usual data structures.

1 Motivations

The initial Curry-Howard isomorphism has been greatly extended in the past decade, leading to

powerful type systems. The correspondance between logic and functional programming within

a typed framework forces both proofs and programs to be identi�ed with strong normalizing

lambda-terms.

Even if we may content ourselves with such a strong result from a pure logical point of

view, its seems clear enough that type systems miss the point as far as they are intended to be

considered as development systems for correct programs. For instance, treatment of exceptions,

unbounded loops or recursive de�nitions are widely used in all programming languages in current

use.

So, connections between logic and programming need to be re�ned, maybe even beyond

Curry-Howard correspondance. Gri�n's original paper [Gri90] emphasizes the interactions be-

tween continuations (in Scheme) and absurd reasoning. This is the starting point of studies

undertaken, among other people, by Murthy [Mur90] and Krivine [Kri90a], leading to a some-

what di�erent approach of the relation between the two domains.

From an other point of view, unbounded loops and recursives de�nitions seem to require the

consideration of lambda-terms no longer normalisable. Starting from the the thesis that recur-

sive structures can be coded by �xpoints, this paper is concerned with the study of an extension

of a typed framework with a �xpoint constructor allowing us to examine more deeply how it

18

should be possible to develop type systems where to reason with non terminating programs or

other recusive program scheme. Our study, restrited to CC, actually develops in the same way as

Parigot's study of recusive integers in the AF2 framework, but independantly since originated

by Constable and Smith papers and Paulin-Mohring's thesis [PaMo89c]. Moreover, most of

the work remains to be done in order to answer the question whether or not such a solution

catch most of the spirit beyond \recusive" features in current use in functional programming

languages.

This paper develops as follow : in a �rst part we give a short overview of di�erent possible

solutions for the introduction of partial terms and we describe how to make the last of these

solution �t with the Calculus of Constructions. Then, the extension CC

+

is presented and

examined with its main metamathematical properties. The second part is devoted to the study

of di�erent internal codings for intergers in our framework ; there, computational and logical

expressivity are the case in point.

2 Partial objects in a typed framework

From now on, we rely on the thesis that \recursive" structures can be coded through �xpoint

constructs. Let T be any type system ; we assume at least the ! constructor is available in T .

The main property we should expect from a type system is its logical consistency : there exists

at least one type inhabited by no term.

2.1 A �rst attempt

Let P be any type and 0 an empty type. A �xpoint constructor, say fix(), given a term

f : P ! P , provides a new term fix(f) : P . One step of computation obviously consists in an

unfolding step

[��x] fix(f) �! f(fix(f))

Now, observe that, we can always form �x:x : P ! P ; hence fix(�x:x) : P . In particuliar,

the type 0 can no longer remains a empty type. Consistency is lost.

2.2 A re�nement

We may wonder whether it is possible to avoid this phenomenon by allowing such a new term

to be formed only in case P is already an inhabited type. Although there is no general answer

to such a question, this re�nement fails, for example in the Intuitionnistic Type Theories (ITT).

Per Martin-L�of observed that the base type N is now provided with a �xpoint for the successor

function. But then the axiom 8n n 6= n+ 1 is no longer valid.

2.3 A general solution

In [CoSm87, CoSm88], Constable and Smith suggested a simple and elegant solution which

avoids the di�culties encountered. Moreover, it seems to �t with most of the type systems.

Starting from a type system T , we build an extension T

0

where the same rules are allowed

at the level of types and terms as well. However a new feature is now available. Each type P

is associated a new bar type : P . This type is intended to be the type of the computations

19

over terms belonging to P ; these computations, when converging (having a value) denote terms

from P . Thus the fundamental rule, from the authors' point of view, is :

[bar] a 2 A () (a#) a 2 A)

where t# is an internal predicate asserting the convergence of t.

Let us give some examples.

A! A the type for partial functions over A.

A! A the type for terms which, if they converge, are total functions.

A! A which corresponds to the type of all partial functions over A in a lazy programming

language.

These examples suggest that we can expect to work in a very expressive type theory, from

the point of view of the degrees of partiality that can be expressed.

As expected, the introduction of �xpoints is now allowed over bar types only :

[�x] If f 2 A! A then fix(f) 2 A

Some examples are provided in [CoSm87, CoSm88] and in [Smi88] where a consequent study

of this kind of extended type system is done in the NuPrl framework. We devote our attention

to the adaptation of this idea to a somewhat di�erent type system.

2.4 Adaptation to the Calculus of Constructions

Although the adaptation from NuPrl to CC followed a more sinuous way, it is possible to ex-

plain the translation shortly. We are about to work with terms for which termination can be

guaranteed no longer. This is what we want at the level of programs. Nevertheless, up to now,

logical proofs and programs are all identi�ed with the same objects, the same typed terms in

the system. But we do want to consider that a logical proof must be \complete" so as to say.

So, from the logical point of view, strong normalisation is the property required.

It seems clear for us that logical proofs and programs can no longer be identi�ed. The notion

of \value" is di�erent from the two points of view. It is actually the case that the introduction

of bar types proceeds from this analysis, even if the justi�cation has not be given this way by

Constable and Smith. So we have to �nd the right way to split the system into two parts : the

�rst being semantically taken as the logical system, and the second one as the programming

language. Now we already know how to do the job. In [PaMo89c], Paulin-Mohring introduced

a new constant Spec (Set elsewhere) in order to distinguish between terms with or without any

informative contents. The explanation, given explicitly, was to separate proofs from programs.

And such a trick does the job, since then, terms are unambigous correspondance with one of the

two constants Prop and Spec (or Set). Hence, the solution follows the same idea : we introduce

a new constant, named Prop, in order to mark terms to be considered as partial terms. Here is

for the construction of bar types in the Calculus of Constructions. Now, partial programs and

partial schema are easily formed through a single new constructor, in the CC-like style.

At least, we can accept a logical proof as soon as there is a proof for its termination. This

last point is taken into account through the predicate of convergence within NuPrl. However

we consider that this predicate cannot be put in the system ; but rather belongs to a metalevel

with respect to CC system. So this part will be dropped out from our extension.

20

3 Presentation of CC

+

; main results

Although we need only the new constant Prop, the use of the additional symbol Type will ease

presentation. However, Type and Type can be confuse in any implementation of our extension.

3.1 Terms

The set of terms of CC

+

, denoted �

+

, is the least set of terms containing the constants Prop

and Prop, a denumerable set V of variables, and close for the following constructs :

application (M N)

abstraction [x : M]N

�xpoint hx : MiN

product (x : M)N

where M; N 2 �

+

and x 2 V.

3.2 Positive occurrences of a variable

The necessity of a restriction on the recusive schema is obvious, if we expect to keep the calculus

as well behaved as possible. Otherwise, for instance, the proposition

� � hX : Propi(C : Prop)((X ! X)! C)! C

will collect all pure lambda-terms !

Let M 2 �

+

and x 2 V a �xed variable. The predicates Pos

X

(�) and Neg

X

(�) are given a

mutually recursive de�nition as follow :

� if X 62 FV (M) then Pos

X

(M) and Neg

X

(M) ;

� if M � X then Pos

X

(M) ;

� if M � (B A) or [y : A]B then

{ Pos

X

(M) if X 62 FV (A) and Pos

X

(B),

{ Neg

X

(M) if X 62 FV (A) and Neg

X

(B).

� if M � (y : A)B then

{ Pos

X

(M) if Neg

X

(A) and Pos

X

(B),

{ Neg

X

(M) if Pos

X

(A) and Neg

X

(B) ;

� if M � hy : AiB then

{ Pos

X

(M) and Neg

X

(M) if X 62 FV (M).

The case for a �xpoint is justi�ed plainly in the above lines.

21

3.3 Notions of reduction

Substitution is de�ned straightforwardly. There are two notions of reduction:

� ([x : M]N L) �!

�

N [x=L]

�fix hx : MiN �!

�fix

([x : M]N hx : MiN)

whereM , N , L 2 �

+

and x 2 V. We let!

�

+

be the re
exive and transitive closure of + � �[��x

and =

+

the congruence generated by it.

Our choice for �fix comes from the fact that if ! is a �xpoint for the function f then we do

have ! = f(!). Choosing �fix as hx : MiN �!

�fix

N [x=hx : MiN] would have hidden the fact

that, in the Calculus of Constructions, all the �xpoints we may construct are actually �xpoints

of functional terms. Moreover it would have led to a bad reduction behavior. For, dealing with

�xpoint computations involves that we must take head reductions as meaningful.

Notice that the condition imposed to a �xpoint, for the positivity of a variable in this �xpoint,

can be deduced from the cases for the application and the abstraction. This a strong condition

but there is no way to �x a weaker one since we do not know anything on the properties of the

calculus. Then, in order to prove good properties on the calculus, we need to �x a condition

invariant under reduction, hence under ��x reduction in the present case.

Then, both reduction is substitutive and the reduction + is weakly con
uent (weakly Church-

Rosser).

3.4 Inference and equality rules

Figures 1 and 2 recall the rules valid in CC. The letter S stands for any constant Prop, Type

: : : and Prop, Type as far as CC

+

is concerned. Notice the shortcut f g for any of the constructs

[], () or h i.

The additional rules required in CC

+

are given in �gure 3.

3.5 Syntax of a well typed term

Any well-formed term M is of one of the following forms (modulo �-conversion):

M � [

��!

x : P](

��!

y : Q)(M

0

�!

R)

with

M

0

�

8

>

<

>

:

([z : T]M

1

M

2

)

hz : T iM

1

constant or variable

Where

���!

x : M is for x

1

: M

1

: : : x

k

: M

k

, k � 0.

Moreover, if M is a well typed term, of type N say, then we shall say that M is total if

either N � Type or N is of type Type or Prop. Otherwise such a term is said to be partial.

We denote CC

+

tot

and CC

+

par

the two sets of the partition of well typed terms in CC

+

. It is easily

checked that this de�nition does not depend on N , hence providing a new invariant for the (well

typed) terms, as expected from the section 2.4.

22

empty

[] is valid

var-intro

� `M 2 K x 2 V x 62 �

�; x : M is valid

hypothesis

� ` x 2 V(�)

� ` x 2 �(x)

Prop-intro

� `

� ` Prop 2 Type

prod-intro

�; x : P `M 2 S

� ` (x : P)M 2 S

abs-intro

�; x : P `M 2 N

� ` [x : P]M 2 (x : P)N

appl

� `M 2 (x : P)N � ` R 2 Q � ` P = Q

� ` (M R) 2 N [x=R]

type-conv

� `M 2 N � ` N = N

0

� `M 2 N

0

Figure 1: Rules of inference for CC

23

re

� `M 2 P

� `M = M

sym

� `M = N

� ` N = M

trans

� `M = N � ` N = P

� `M = P

cons

� ` P = Q �; x : P `M = N

� ` fx : PgM = fx : QgN

eqapp

� ` (M N) 2 P � `M = M

0

� ` N = N

0

� ` (M N) = (M

0

N

0

)

�

�; x : P `M 2 N � ` R 2 P

0

� ` P = P

0

� ` ([x : P]M R) = M [x=R]

Figure 2: Equality rules for CC

24

Prop-intro

� `

� ` Prop 2 Type

�x-intro-Prop

� ` P 2 Prop �; x : P `M 2 Q � ` P = Q

� ` hx : P iM 2 P

�x-intro-Type

� ` P 2 Type �; x : P `M 2 P such thatsuch that Pos

x

(M)

� ` hx : P iM 2 P

�-�x

�; x : P `M 2 P

� ` hx : P iM = ([x : P]M hx : P iM)

Figure 3: Additional rules of inference and equality for CC

+

3.6 Main results

conservativity CC

+

is a conservative extension of CC, hence is consistent. (Hint : there is an

obvious extraction function from CC

+

tot

to CC.)

uniform properties The following properties are true over the set of well typed terms :

� Con
uence for the reduction + = � [�fix ;

� Strong normalisation for � reduction ;

� Finiteness of developments and standardisation theorems.

For hints see [Aud91] ; for a complete treatment see [Aud92, Aud93].

3.7 Terms \almost in normal form"

The set of normal forms (NF) is too much restrictive since, for example, the term [x : P]x

where P � hX : Propi(C : Prop)(X ! C) ! C, or any other �xpoint, would be excluded

otherwise. However, the type information provided by the \abstraction" parts of a term has

no computational meaning ; it is dropped down in the pure lambda-term obtained through the

erasure function.

Then we can de�ne a weaker notion of normal form, well suited with an environment of

partial terms. The set ANF of terms almost in normal form is de�ned as the least class of

well-formed terms containing the constants Prop and Prop, the set V of variables and closed

by

M ANF) [x : P]M ANF

25

M ANF) (x : P)M ANF

N

1

� � �N

k

ANF) (x N

1

� � � N

k

) ANF

Where P 2 �

+

being any type and x is any constant or variable.

We get the obvious facts :

� any propositional type is an ANF ;

� NF � ANF � HNF.

The terms ANF will play the same rôle as NF terms in CC, say, as will now be seen through

the di�erent codings for integers in the extension CC

+

.

4 Internal codings for integers

This part is devoted to the question how both computational and logical expressivity are possibly

improved in CC

+

. The main originality of this extension is the ability to give an alternate

coding for integers. A complete treatment is already given in [Aud91, Aud92] for CC

+

, and in

[Par88, Par92] for AF2. So we would rather like giving a somewhat informal presentation for to

major codings : integers as iterators and as selectors. We emphasize our presentation does not

claim to be rigorous. However, we expect this approach to show how the computational behavior

of (codes of) integers uniquely depends upon a more or less immediate proof of mathematical

equality.

4.1 Primitive recursion over integers

Given a 2 A and h 2 N � A ! A, the primitive recursion schema says there exists a (unique)

solution g 2 N! A such that :

g(0) = a and 8n 2 N g(n+ 1) = h(n; g(n))

Informally :

a

@

@

@R

1

0

�

�

��

?

hf; gi

N�A N�A

-

h�

1

� s; hi

N N

-

s

?

hf; gi

As a consequence, f : N! N must satisfy :

f(0) = 0 and f � s = s � f

Thus, in any cartesian closed category with N as a natural number object (nno), we can

conclude f = id

N

. It works since N is precisely an initial object 1

0

! N

s

! N in the category of

diagrams 1

x

! C

f

! C.

26

4.2 Integers as iterators

In CC (in system F already), integers are internally coded in such a way we collect Church's

integers as normal forms through the proposition :

Nat

i

� (C : Prop)C ! (C ! C)! C 2 Prop

Thus this representation mimics as well as possible the position of Nat

i

as nno in the type

system. Let 0

i

and S

i

be the closed terms which code zero and the successor function. Then

the \regular integers" are coded through the set f((S

i

)

k

0

i

)k 2 Ng. The induction principle is :

Ind

i

� [n : Nat

i

](P : Nat

i

! Prop)(P 0

i

)! ((n : Nat

i

)(P n)! (P (S

i

n)))! (P n)

This principle expresses that any property is true for an integer, as soon as it is true on the set

of codes of regular integers.

Two major problems are carried out by such a representation :

� No proof exists for (n : Nat

i

)(Ind

i

n). As noticed in [PaMo89a, PaMo89c], we need the

fact that (n Nat

i

0

i

S

i

) equals n. But this property means precisely that every n : Nat

i

is actually the code for a regular integer. n being a variable, this is obviously impossible

to know. However this equality holds for closed terms, at the meta level. Here is for the

structural point of view, as far as logical expressivity is concerned.

� Now, let us have a look at the computational expressivity. A solution to primitive recursion

schema is provided in CC, through the recursor term rec

i

, by

g � [n : Nat

i

](rec

i

n A a h)

Nevertheless the equality f = id

Nat

i

can only be proved for regular integers, that is to say

terms satisfying the induction principle. We need the same property : \n is zero or the

successor of another term", but at the level of programs now ; this is a non dependent

version for the former problem (see [PaMo89c, section 4.4.1]).

So let us considerer we are dealing with those well built integers. We want to consider the

simplest of all primitive recursion schema

p(0) = 0 and p(n+ 1) = n

giving the predecessor function. From the computational point of view, we get the follow-

ing diagram

hf(n); p(n)i hf(n+ 1); ni

-

n n+ 1

-

? ?

Hence computation of p(n+ 1) forces that of f � s(n), so the computation of s � f(n) too.

Eventually, the e�ective computation of that term will have force that of s�f(n); : : : ; s

n

�

f(0), even though we already know the result will be n. Thus this computation takes a

number of �-r�eductions in
(n). This simple example makes it apparent the evaluation

mecanism linked to the very nature of Church's integers : there are iterators. And, at the

level of programs, their imperfection lies in that character.

27

How far is it possible to improve these two points ? In [CoPa89] Coquand and Paulin-Mohring

gave a solution through an extension of CC with inductive types. We restrict our attention to

CC

+

.

4.3 Integers as selectors

In a cartesian closed category, any nno N satis�es another diagram :

C

x

@

@

@

@R

1 N

-

0

?

[x; f]

N N

�

s

f

�

�

�

�	

Let us consider the predecessor function. We note that C � N, f � id

N

and x � 0. Then

we get :

[id; 0](0) = 0 and [id; 0](n + 1) = n

Clearly, [id; 0] is the predecessor function over N. Moreover its computation is now immediate.

Although Nat

i

satis�es this kind of diagram too, at least as far as we restrict ourselves to

the set of well built terms. But then we get rather the existence of two terms such that :

Nat

i

out

in

(C : Prop)C ! (Nat

i

! C)! C with in � out = id and out � in = id.

Now, through �xpoint construction, we are able to de�ne Nat

r

such that

Nat

r

= (C : Prop)C ! (Nat

r

! C)! C

It su�ces to de�ne

Nat

r

� hN : Propi(C : Prop)C ! (N ! C)! C

Notice that we must work over Prop. Then we get

0

r

� [C : Prop][x : C][f : Nat

r

! C]x

S

r

� [n : Nat

r

][C : Prop][x : C][f : Nat

r

! C](f n)

P

r

� [n : Nat

r

](n Nat

r

0 id

Nat

r

)

where P

r

is the predecessor function.

More generally, a solution to any primitive recursion schema is easily found using �xpoint

at the level of programs :

g = [n : Nat

r

](n A a [p : Nat

r

](h p (g p)))

This point clearly shows that introduction of �xpoints is a good way to improve the com-

putational behaviour of integers. Moreover �xpoints provide more programs, that is more

realizations for speci�cations of programs ; indeed we are not forced to give a solution g as a

�xpoint. Nevertheless they are required in order to give a solution for �-recursion schema :

given f : N ! N, �nd the least integer n such that f(n) = 0. If we did not know there is such

an integer, no solution exists in CC, since any computation terminates. In CC

+

the solution is

obvious : take g(0) where

g(k) = (f(k) Nat k [p : Nat]g(p+ 1))

in a informal syntax.

28

Main results

Let us the give here the main results about the \recursive" solution Nat

r

. In the following lines,

n is for the code of the nth integer.

� 8n 2 N (P

r

(S

r

n))!

�

n (in a �xed number of step indeed) ;

� The set of closed anf terms of type Nat

r

is the set fn j n 2 Ng ;

� All partial recursive functions over integers are de�nable in CC

+

. (Hint : the proof follows

the same lines as Barendregt's in ??)

Logical expressivity

There remains the question whether or not CC

+

provides an improvement at the structural

level. We pointed out Nat

i

behaves as well as a nno provided it is restricted to the subset of well

built terms. Since then Nat

i

satis�es the second diagram, there must exist a correspondance

between Nat

i

and Nat

r

. And it is actually the case through the terms :

i � [n : Nat

i

](n Nat

r

0

r

S

r

)

2 Nat

i

! Nat

r

r � [n : Nat

r

](n Nat

i

0

i

[p : Nat

r

](S

i

(r p)))

2 Nat

r

! Nat

i

Precisely, these two terms give a one-to-one correspondance between codes of regular integers

in both of the types. But the fact Nat

i

satis�es the same diagram as Nat

r

says more. If it were

to exist a proof for (n : Nat

r

)(Ind

r

n) then, inevitably, (n : Nat

i

)(Ind

i

n) would be provable

too. The converse is true of course. And indeed we can prove :

(i) (n : Nat

i

)(Ind

i

n)! (Ind

r

(i n))

(ii) (n : Nat

r

)(Ind

r

n)! (Ind

i

(r n))

(iii) (n : Nat

i

)(Ind

i

n)! n = (r � i n)

(iv) (n : Nat

r

)(Ind

r

n)! n = (i � r n)

Of course, the very reason why it works is easy to understand. The induction principle,

when satis�ed, �lls the gap between the subset of regular integers and all integers.

We are allowed to conclude the study of integers we took as an example, shows that our ex-

tension cannot be expected to improve the logical expressivity of the Calculus of Constructions.

5 Further developments

The study brie
y undertaken in the case of the integers through various internal codings can

be followed in its main lines as far as we restrict ourselves to the usual data structures such

that lists or trees. Actually, close connections have been established between \simple (concrete)

types" as described in [PaMo89c] and their recusive counterpart in CC

+

: see [Aud92]. Such

an equivalence emphasizes the main result that introduction of �xpoints, the way it is done in

29

CC

+

at least, does not improve the logical power of CC but rather gives the user the ability of

realizing more programs and more speci�cationss.

The better that kind of \limitation" is understood, the more we are able to simplify, to relax

the rules previously given for the introduction of �xpoints. For example, Ch. Paulin-Mohring

suggests to allow �xpoints within Prop (hence dropping out Prop) and, at the same time, to

remove �xpoints at the level of proofs. This idea, and other variations, clearly deserve further

attention.

As a matter of temporary conclusion let us focus the attention on a major theme, from

our own point of view. Where mathematical reasoning usually contents itself with equalities,

programming practice, thus usage of proof development systems as well, is mostly concerned

with the way mathematical objects are computed. This dynamic point of view seems to belong

to the core of this domain of research, if to be considered really as a science. Hence, we think

that this di�culty should not be avoided. To give just one concrete example, �xpoints are

allowed in CC

+

exactly where syntactic transformations already exist in CC. We got the feeling,

a posteriori, that no �xpoint over schema would have been even conceivable otherwise. And,

in that case, working with recursive schema means forcing the corresponding transformation to

be taken as the identity function (c�rcion) ; at least this is true as far as we restrict ourselves

to the set of \well built" terms within a simple type : see [PaMo89c].

References

[Aud91] Audebaud P. (1991) Partial Objects in the Calculus of Constructions. In 6nd Conf.

on Logic in Comp. Science. IEEE, 1991. Available through anonymous ftp to

geocub.greco-prog.fr in /pub/Papers/Audebaud repertory.

[Aud92] Audebaud P. (1992) Extension du Calcul des Constructions par points �xes. Th�ese,

Universit�e Bordeaux I, 1992. Available through anonymous ftp to geocub.greco-

prog.fr in /pub/Papers/Audebaud repertory.

[Aud93] Audebaud P. (1993) Uniform properties in the Calculus of Constructions. submitted

to TLCA`93.

[Bar84] Barendregt H.P. (1984) The Lambda-calculus: its syntax and semantics. 2nd ed.

Norh-Holland. Amsterdam.

[CoPa89] Th. Coquand and C. Paulin-Mohring. Inductively de�ned types. In P. Martin-L�of

and G. Mints, editors, Proceedings of Colog'88. LNCS 417, Springer Verlag 1990.

[CoSm87] Constable R.L. and Smith S.F. (1987) Partial objects in constructive type theory.

In 2nd Conf. on Logic in Comp. Science. IEEE, 1987.

[CoSm88] Constable R.L. and Smith S.F. (1988) Computational foundations of basic recursive

function theory. In 3nd Conf. on Logic in Comp. Science. IEEE, 1988.

[CoMe85] Constable R.L. and Mendler N.P. (1985) Recursive de�nitions in Type Theory. In

Logics of Programs. Parikh R. editor. LNCS 193, Springer Verlag, 1985.

[Gri90] Gri�n T. 1990. A formul�-as-types notion of control. In Conference Record of the

Seventeenth Annual ACM Synposium on Principles of Programming Languages,

1990.

30

[Kri90a] Krivine J.-L. 1990. Op�erateurs de Mise en M�emoire et Traduction de G�odel. Rap-

port technique de l'Equipe de Logique. Universit�e Paris VII. Janv. 1990.

[Kri90b] Krivine J.-L. 1990. Lambda-calcul, �evaluation paresseuse et mise en m�emoire. A

parâ�tre dans Informatique Th�eorique et Applications, RAIRO.

[Luo90] Luo Z. (1990) ECC, an Extended Calculus of Constructions. In Information and

Computation.

[Mend87] Mendler N. (1987) Recursive Types and type Constraints in Second-Order Lambda

Calculus. In 2nd Conf. on Logic in Comp. Science. IEEE, 1987.

[Mur90] Murthy C. 1990. Extracting Constructive Content from Classical Proofs. Ph.D.

Cornell University, 1990.

[Par88] Parigot M. (1988) Programming with proofs: a second order type theory. Proceed-

ings of ESOP `88 (ed. H. Ganziger) Lectures Notes in Comp. Science 300. Springer

Verlag. Berlin.

[Par92] Parigot M. 1992. Recursive Programming with Proofs. Theoretical Computer Sci-

ence 94 (1992) p.335-356.

[PaMo89a] Paulin-Mohring Ch. (1989) Extracting F! programs from proofs in the Calculus of

Constructions. In Proceedings of 16th ACM Symposium on Principles of Program-

ming Languages. ACM, New-York.

[PaMo89b] Paulin-Mohring Ch. (1989) Inductive de�nitions in the Calculus of Constructions.

(draft) In The Calculus of Constructions Rapport technique INRIA 110.

[PaMo89c] Paulin-Mohring Ch. (1989) Extraction de programmes dans le Calcul des Construc-

tions. Th�ese Paris 7, 1989.

[Smi88] Smith S.F. (1988) Partial Objects in Type Theory. Ph.D. Dissertation. Cornell

University.

31

Continuations and Simple Types: a Strong Normalization Result

Franco Barbanera

Torino

Abstract

We present a work in which we study the termination problem for a typed lambda-

calculus with continuations. We do not bound ourselves to study a particular reduction

strategy, like call-by-value or call-by-name. Reductions may be applied to any part of any

term in any order. Our main result is that every reduction sequence in the system terminates.

32

Game theory and Program extraction.

Stefano Berardi

Torino

Abstract

We interpret each classical formula P as a game G(P) between two players (A and B).

Player A is committed to show that P is true and player B that P is false. We interpret

a proof as a recursive winning strategy for G(P). This work is inspired by Coquand's last

work, di�ering from it in three aspects :

{ we interpret linear logic �rst

{ we use perfect information games

{ we prove cut elimination in a purely intuitionistic way.

33

Deliverables: a categorical approach to program development in

type theory

Rod Burstall and James McKinna

�

Laboratory for the Foundations of Computer Science

University of Edinburgh

y

August 11, 1992

1 Introduction

This paper outlines a method for constructing a program together with a proof of its correctness

with respect to a given speci�cation. The technology used is type theory, in fact an extended

version of Calculus of Constructions Luo's ECC [22] as implemented in Pollack's `Lego' sys-

tem [24]; here program means a primitive recursive description of a function using simply typed

lambda calculus with higher order functions and data types such as numbers and lists.

Given a precondition and a postcondition we consider pairs consisting of

� a program

� a proof that the program satis�es the postcondition given the precondition.

We call such a pair together with the pre- and postconditions a deliverable, since it is what

a software house should ideally deliver to its client instead of just a program.

Now we observe that various operations, composition, pairing, iteration and so on, can be

used to combine deliverables, and that these operations can be implemented in ECC. Consider

for example composition. If (f; p) is a deliverable from pre to post and (f 0; p0) is a deliverable

from post to post0 then their composition is a deliverable from pre to post0 thus

� f � f 0, the composition of the functions

� a proof using p and p0 that f � f 0 satis�es post0 given pre.

In fact the combining operations (excluding iteration) are exactly those of a cartesian closed

category whose objects are the pre- and postconditions and whose arrows are deliverables. This

is comforting since it assures us that we have a complete set of combinators. They enable us to

build a complicated program together with its correctness proof. Since the resulting expression

of the calculus denotes a pair we can extract the program trivially by evaluating the �rst element

of the pair.

�

The authors are gratefully for the support of the EC Logical Frameworks BRA and the SERC

y

J.C.M.B., King's Buildings, May�eld Rd., Edinburgh EH9 3JZ, UK;

e-mail rb@dcs.ed.ac.uk, jhm@dcs.ed.ac.uk

34

We have used the Lego system to de�ne these combinators and use them to create the

deliverables for several programs as examples.

However in many cases a precondition and a postcondition do not satisfactorily specify a

desired program. For example when developing a sorting program the precondition might ask

for an arbitrary list and the postcondition demand that the result be a sorted list. But we

would get little thanks for a program which always returned the nil list, even though this is

sorted. We need to specify that the output list should also be a permutation of the input one.

If we try to replace the pre- and postconditions by a single statement specifying a relation

between input and output there do not seem to be convenient combination operators; so we

discard that approach. Thinking syntactically, we could allow the pre- and postconditions to

share a free variable. For example using a free variable l for lists

pre(x) = x = l

post(y) = isPermutation(y; l)

This ties the pre- and postconditions together, but such free variables should have a de�nite

scope.

We can think, more semantically, that l satis�es some base condition (it must be a list) and

the pre- and post conditions are relations whose �rst argument is l. Thus we can talk of pre-

and post conditions relative to l. Now a deliverable relative to l is a program which takes the

precondition to the postcondition for all l. We will refer to these as second order speci�cations

and deliverables in contrast to the original �rst order ones.

How should we represent speci�cations and deliverables in type theory? We choose the

following.

A �rst order speci�cation is a predicate over a type thus

� a type, s

� a function, S, from s to Prop (the type of propositions)

and a �rst order deliverable from speci�cation (s; S) to speci�cation (t; T) is a program with

proof thus

� a function , f : s! t

� a proof, � : 8x : s:Sx! T (fx) where 8 is the

Q

quanti�er on propositions.

Now we can generalise these to work relative to a �rst order speci�cation (u;U), which

corresponds to the free variable l in our example. Call u the base type; now the second order

speci�cation becomes a relation over the base type and another type, and the second order

deliverable must respect the pre- and postrelations. We leave the details to the body of the

paper.

We might try to characterise the �rst order deliverables as a cartesian closed category whose

objects are speci�cations and whose arrows are deliverables; this is almost correct, but we have

to modify the CCC to a semi-cartesian closed category, a mild generalisation due to Hayashi [12].

The second order deliverables are then characterised using a �bration whose �bres are categories

of �rst order deliverables. In fact this structure constitutes a model of type theory.

The paper includes some illustrative examples of program development using deliverables

and brief mention of others, of which the most substantial is an algorithm for the Chinese

Remainder theorem.

35

We also discuss the relation to earlier work on extracting programs from proofs, particularly

the work of Martin-L�of as developed by N�ordstr�om, Petersson and Smith [29]. They de�ne

a translation from a type theory, say S, to an underlying type theory U such that the types

in S correspond to our speci�cations and the unary terms in S correspond to our deliverables.

A somewhat similar approach is taken by Paulin-Mohring [30] in her program extraction using

the realisability interpretation.

The virtue of our method is that it can quite easily be coded up in an existing system, and

there is no di�culty about extracting the program from the proof, since they are built together

but as separate components of a pair; normalising the �rst component gives us the program.

We have mentioned operations for combining deliverables, and this might suggest a bottom-up

approach; but we can just as well start with a speci�cation of the desired program and derive

the corresponding deliverable top-down by re�nement in Lego.

The weakness of our method is that we have to use a combinatory notation which is less

perspicuous than the usual � notation of type theory. Since deliverables form a model of type

theory, this might possibly be recti�ed by extending ECC with an extra kind whose types

would be speci�cations and whose terms would be deliverables, thus following the insight of

Martin-L�of; but we have not yet worked out this approach.

The basic approach was proposed in an unpublished talk by Burstall at the B�astad Workshop

on type theory in 1988. A brief account by the present authors appeared as [4], and a full

treatment of work so far is in McKinna's thesis [25].

2 Review of ECC and a simple example

Luo's Extended Calculus of Constructions, ECC, [21, 22] is a rich type theory containing Co-

quand and Huet's Calculus of Constructions [6, 7] as a subsystem, together with strong �-types

and a cumulative hierarchy of predicative universes, much as in the systems considered by

Martin-L�of and his collaborators [26, 27, 29]. In Martin-L�of systems, all types may be read

as propositions, and in Coquand and Huet's original system, all propositions may be read as

types. ECC avoids this blurring of distinctions, giving us access to full intuitionistic higher-order

logic at a propositional level, together with a predicative environment for computation and ab-

stract mathematics. It is precisely this ability to distinguish propositional from computational

information within a single framework which underlies our approach to program development.

ECC is built out of a calculus of terms with the following o�cial syntax

T ::= � j V j

�V :T:T j �V :T:T j TT j

�V :T:T j pair

T

(T; T) j �

1

(T) j �

2

(T)

where V ranges over some in�nite collection of variables, and � ranges over Prop and Type

i

(i 2 !), the so-called kinds of ECC. Prop is an impredicative universe, as in Coquand and

Huet's original systems [6], intended to contain propositions, while the Type

i

are predicative

universes much like a set-theoretic hierarchy (and very similar to the U

i

of some versions of

Martin-L�of's theories [29, 27]). Substitution for free occurrences of variables is de�ned in the

usual way. Terms are identi�ed up to renaming of bound variables. The basic conversion relation

'

�

is de�ned on all terms, and as usual is the congruence closure of the familiar reductions:

(�) (�x:A:M)N �M [N=x], and

36

fV:TgT corresponds to �x: T: T ,

[V:T]T to �x:T: T ,

<V:T>T to �V :T:T ,

(T,T) to pair

�x:A:B

(T; T),

T.1 to �

1

(T),

and T.2 to �

2

(T).

Table 1: Comparison between syntax of LEGO and ECC

(�) �

i

(pair

T

(M

1

;M

2

)) �M

i

(i = 1; 2).

LEGO is Pollack's implementation of a typechecker and re�nement proof system for ECC

and a number of related systems, based on earlier ideas of Huet, de Bruijn and others [3, 6].

The LEGO syntax for terms in the language of ECC is given by

T ::= Prop j Type(i) (i 2 !) j V

fV:TgT j [V:T]T j TT j

<V:T>T j (T,T) j T.1 j T.2

where the correspondence with the o�cial syntax is given in Table 1. As usual, the non-

dependent �-types is denoted by an in�x !.

The syntax has recently been extended to provide arbitrary extensions to the conversion

relation. As an example, we may add a type of natural numbers, by declaring appropriate

constants in an initial context

�

nat

= nat:Type

0

; 0:nat; S:nat! nat;

natrecd

1

:�C:nat! Type: (C0)! (�k:nat: (Ck)! (C(Sk)))! �n:nat: Cn

together with reductions

natrecd C z s 0 � z

natrecd C z s (Sk) � s k (natrecd C z s k)

for C; z; s; k of the appropriate types.

In this context, we may derive the following term

�

nat

; n:nat ` 8�:nat! Prop:�(0)) (8k:nat:�(k)) �(S(Sk)))) �(n) : Prop

which represents impredicatively the (informal) proposition that n is an even natural number.

That is, we de�ne even numbers to be those n which satisfy all predicates satis�ed by 0 and

closed under successor of successor (the impredicativity, of course, lies in the fact that \evenness"

is just such a predicate). Moreover, in this representation

�

nat

` ��:nat! Prop:

�z:�(0) :

�s:8k:nat :�(k)) �(S(Sk)) :

z

: 8�:nat! Prop:�(0)) (8k:nat:�(k)) �(S(Sk)))) �(0)

1

\d" for dependent.

37

is a term representing a proof that 0 is even.

Example In the same way, one could de�ne a predicate representing \oddness",

Odd =

def

�n:nat: 8�:nat! Prop:�(S0)) (8k:nat:�(k)) �(S(Sk)))) �(n)

being one such representation. One might then show that the successor function S transforms

even numbers into odds, and odds to evens, yielding terms sEO of type 8n:nat: Even(n) !

Odd (Sn) and sOE of type 8n:nat: Odd (n) ! Even(Sn) (the patient reader may care to

experiment with the system by doing just such a thing).

What is the behaviour of the composite function x 7! x + 2? We may use the proofs sEO

and sOE, together with modus ponens, to derive a term ssEE of type 8n:nat: Even(n) !

Even(n+ 2).

Now the �-types of the calculus allow us to pair together these fragments of code with their

associated proof terms, for example

(S; sEO) : �f :nat! nat: 8n:nat: Even(n)! Odd (fn)

and we may see the pair (�n:nat: n + 2; ssEE) arising as a composite construction from the

pairs (S; sEO) and (S; sOE).

The pair (�n:nat: n+ 2; ssEE) of type

�f :nat! nat: 8n:nat: Even(n)! Even(fn)

is a very simple instance of the general idea below of a �rst-order deliverable, in this case from

(nat;Even) to (nat;Even).

3 De�nition of �rst-order deliverables

We work relative to some well-formed context � in ECC.

De�nition 3.1 speci�cation

A speci�cation is a pair of terms s, S such that � ` s : Type, and �; x:s ` Sx : Prop:

We typically write S;T ;U for speci�cations, and understand s; t; u (respectively S; T; U) as

referring to their underlying type (resp. predicate). Formally, there is a type of speci�cations,

namely SPEC

1

=

def

�s:Type:s! Prop, so that we may consider operations which construct

speci�cations entirely within the framework of ECC (cf. the account of speci�cations and

re�nements in [23]).

We will consider a category whose objects are the speci�cations. Speci�cations de�ned by

logically equivalent predicates in general de�ne distinct objects. The appropriate notion of

morphism between speci�cations consists of a pair (f; �), where f is a function between the

underlying types, and � is a proof that f respects the predicates. We call these morphisms

�rst-order deliverables.

De�nition 3.2 �rst-order deliverable

Given speci�cations S = (s; S);T = (t; T), a �rst-order deliverable is a term F such that

� ` F : �f : s �! t:8x : s:Sx =) T (fx):

38

The motivation for such a de�nition goes right back to Hoare's original paper on axiomatic

semantics [14], and, like the logic of triples which bears his name, expresses in a formal system

the informal notion of a program, together with a certi�cate of some speci�ed input/output

behaviour. Of course, we are concerned with a functional language, rather than an imperative

one, so there is no confusion over program variables and logical variables. In this framework,

moreover, the proof and the program are linked as a pair. This de�nition uses the �-types in an

essential way to capture this idea. We may use all the features of ECC to construct such pairs,

but based on our intuitions about computational vs. propositional information, we insist upon a

trivial extraction process: �rst projection �

1

from the �-type yields the underlying algorithm f .

Indeed this accounts for the name \deliverables": they are what a software house should deliver

to its customers, a program plus a proof in a box with the speci�cation printed on the lid (the

�-type). The customer can independently check the proof and then run the program, without

the need for a complicated extraction process which may yield an unusual algorithm. Indeed,

we propose this method as a style for developing programs in the �rst place. We usually have

a reasonable idea of the algorithm in advance, as opposed to its proof of termination, or even

correctness, and we would like an understanding, which re
ects our intuitions, of how to build

up these deliverables from smaller ones, for example by re�nement and composition, possibly

with machine assistance.

In terms of LEGO, we de�ne a predicate Del

1

and a type constructor del

1

which describe

�rst-order deliverables within ECC (compare De�nition 3.2 above):

Lego> Del1;

value = [s,t|Type][S:Pred s][T:Pred t][f:s->t]{x|s}(S x)->T (f x)

type = {s,t|Type}(Pred s)->(Pred t)->(s->t)->Prop

Lego> del1;

value = [s,t|Type][S:Pred s][T:Pred t]<f:s->t>Del1 S T f

type = {s,t|Type}(Pred s)->(Pred t)->Type

(This is the output from the typechecker after giving the de�nitions). We have exploited the

implicit syntax to enable us to suppress the argument types

2

in the predicate Del1 and the type

del1.

With an eye to the categorical aspects of this de�nition, we typically write

S

F

-

T 2 del

1

or (s; S)

(f; �)

-

(t; T) 2 del

1

when � ` f : s �! t, and � ` � : Del

1

S T f . Since s; t may be inferred by the typechecker,

and we are in general not interested in �, save to know that it exists, we may even abuse our

notation and write

S

f

-

T 2 del

1

:

At this stage, we need not have used the �-types to present these de�nitions. However,

internalising the mathematical pair in a �-type allows us to represent operations which produce

such function-proof pairs within the calculus. This gives us the possibility of developing a

structure on these morphisms.

2

This accounts for our choice of notation: since the types s,t may be inferred from S,T, we relegate them

notationally to the lower case.

39

De�nition 3.3 equality of speci�cations

Given speci�cations (s; S); (t; T), we say (s; S) = (t; T) if

s '

��

t and �x:s: S x '

��

�x:t: T x:

De�nition 3.4 equality of deliverables

Given

(s; S)

(f; �)

(g;)

-

-

(t; T) 2 del

1

;

we say (f; �) = (g;) if

�x:s: fx '

��

�x:s: gx

and

�x:s: �h:S x: �xh '

��

�x:s: �h:S x: xh:

This de�nition of equality of deliverables seems to be the minimal extension of the basic con-

version relation which ensures good categorical properties.

3.1 Semi-structure in categories

The use of cartesian closed categories to give models of the simply-typed �-calculus is by now

familiar in computer science [8, 20, for example], as are various equational presentations of the

structure of a cartesian closed category. The basic type and term constructors are de�ned by

adjunctions. In this analysis, the unit and counit of the adjunction de�ning the arrow type

correspond, loosely, to � and � conversion, respectively (and similarly for the product type

constructor). The absence of �-conversion and surjective pairing in ECC forces some extra

technical di�culty upon us. However, models of various typed �-calculi without �-conversion

and surjective pairing can be given a rigorous semantic account in terms of semi-adjunctions,

introduced by Hayashi in [12]. Essentially, the equations de�ning an adjunction are relaxed

su�ciently that, under suitable conditions, there is a notion of counit which corresponds appro-

priately to �-conversion, without a unit corresponding to �-conversion. A detailed treatment is

given in the thesis [25].

De�nition 3.5 Semi-functor

Given two categories C;D, a semi-functor between them is \a functor which need not preserve

identities": that is to say, we are given an assignment F of objects of D to objects of C, and

an assignment, also called F , of arrows of D to arrows of C, such that

A

f

-

B 2 C implies FA

Ff

-

FB 2 D

and

F (A

f

-

B

g

-

C) = FA

Ff

-

FB

Fg

-

FC 2 D:

In a semi-adjunction, we replace the usual natural bijection on homsets with a pair of maps,

which need not be mutual inverses. However, we still require them to behave \naturally". The

beauty of this idea lies in the following lemma.

40

Lemma 3.1 (Hayashi) Suppose F;G above are in fact functors. Then a semi-adjunction

between F and G yields an adjunction between F and G.

So this concept subsumes the whole of our ordinary understanding of adjunctions, and hence all

the constructions of universal gadgets de�ned by adjunctions

3

. In particular, in a category C,

we may de�ne the notions of semi-terminal object ,semi-product and semi-exponential exactly

by analogy with the usual cartesian closed structure. If C has all the above structure, we say C

is a semi-cartesian closed category, or semi-ccc. Hayashi's development leads to the following

main results, generalising previous accounts of models of the �-calculus with �-conversion only.

Proposition 3.1 Semi-cccs are sound and complete for interpretations of the ��-calculus.

Proposition 3.2 Semi-cccs can be presented algebraically.

In [25], the second author used LEGO to prove the following theorem:

Theorem 3.1 del

1

is semi-cartesian closed.

We sketch some of the ideas in the discussion below.

3.2 Identities and composition

By considering our slight modi�cation of the underlying conversion on the terms of ECC, to

remedy the failure of surjective pairing and �-conversion in the calculus, we �xed a notion

of equality on arrows. With this de�nition, it is now trivial to establish that speci�cations,

together with �rst-order deliverables as morphisms, form a category, denoted by del

1

.

The identities are given simply by

(s; S)

(�x:s: x; �x:s: �h:Sx: h)

-

(s; S) 2 del

1

;

in LEGO, we have

Lego> id_del1;

value = [s|Type][S:Pred s]([x:s]x,[x|s][p:S x]p)

type = {s|Type}{S:Pred s}del1 S S .

Composition is given by

S

(f; �)

-

T

(g;)

-

U = S

(�x:s: g(fx); �x:s: �h:Sx: (fx)(�xh))

-

U ;

We may now verify that these de�nitions do indeed yield the structure of a category on del

1

4

.

3.3 Semi-Terminal object

Unit =

def

(unit ; �u : unit :u = ()

5

) : SPEC

1

de�nes a trivial speci�cation, where we postulate the existence of a unit type in the same way

as other inductive types. We then obtain, for any speci�cation (s; S) the deliverable

!

(s;S)

=

def

(�x:s: (); �x:s: �p:S x: re
EQ()) : del

1

S Unit :

3

However, by contrast with adjunctions, structure de�ned by a semi-adjunction is not in general unique.

4

Indeed, we only need the modi�ed equality to prove the identity laws. The conversion relation is su�cient

to establish associativity of composition.

5

Here, () is the unique term of type unit. We write void in LEGO.

41

3.4 Binary semi-products

To obtain semi-products, we use the non-dependent �-type as the underlying type, with con-

junction at the predicate level:

S � T =

def

(s� t; �p:s� t: (S(�

1

p)) ^ (T (�

2

p)):

That we indeed have a semi-product structure now follows straightforwardly from this de�nition.

3.5 Semi-exponentials

The notion of �rst-order deliverable is based on the predicate Del

1

on terms of arrow type.

Precisely this predicate de�nes the speci�cation which yields a semi-exponential object in del

1

.

�-abstraction and evaluation then follow from those operations in the underlying type theory

on values, and implication introduction and elimination at the level of proofs.

S =) T =

def

(s! t; �f :s! t: Del

1

S T f)

3.6 Trivial deliverables

Every function | that is to say a term of arrow type | gives rise to a deliverable, very much

in the manner of the assignment rule of Hoare logic [14] or Dijkstra's predicate transformer for

assignment[9]. Namely, for

f : s �! t; P : t �! Prop

we obtain

(f; �x:s:�h:f

?

P:h):del

1

f

?

P P; where f

?

P =

def

�x:s:P (fx):

We call these deliverables trivial , since they come with vacuous proofs of correctness.

3.7 A consequence rule

Logical implication induces a pointwise ordering� on predicates, for which we have the following

consequence rule, in the manner of Hoare logic:

S � S

0

S

0

(f; �

0

)

-

T

0

T

0

� T

S

-

(f; �)

T

In fact, this rule is subsumed by composition, since any logical entailment gives rise to a deliv-

erable whose function component is the identity.

3.8 Pointwise construction

A basic combinator in the theory of deliverables constructs a function-proof pair from a function

which returns value-proof pairs

6

. Mendler, in his thesis [28], calls such gadgets \pointwise

6

This just corresponds to Howard's observation that, given a strong interpretation of the existential quanti�er

as �-type, the axiom of choice becomes constructively valid [15].

42

designs": for each argument value x, the pointwise existence of a value y (of type t) satisfying

some property Tv, yields a deliverable with codomain (t; T). In detail,

F : �x:s: �y:t: (Sx) �! (Ty)

S

(f;�)

-

T

where f =

def

�x:s: �

1

(Fx), and � =

def

�x:s: �h:Sx: �

2

(Fx)h.

3.9 Inductively de�ned types

Provided we accept a weak de�nition of inductive type, it is relatively straightforward to add

inductive types to the categorical structure developed so far. Categorical accounts of inductive

types, via initial algebras, impose extra equalities on the iterator, due to the uniqueness clause

in the de�nition of initial algebra. As with the semi-structures above, we only have existence,

and not uniqueness, of the relevant universal arrows.

The basic idea is very simple: we add inductive types at the Type level, with a strong

7

elimination rule, yielding a simply typed recursor at the Type level, and the usual induction

principle at the Prop level. This type is then paired with the identically true predicate. The

elimination rule for �rst-order deliverables is easily derived, by packaging primitive recursion at

the type level with induction at the predicate level. We illustrate this general idea by considering

the case of natural numbers and lists.

3.9.1 Natural numbers

Recall from Section 2 that we may postulate the existence of a type of natural numbers, with

two constructors, zero and successor. This yields the well-formed context

nat:Type; 0:nat; S:nat �! nat

We typically abbreviate S to \+1" in informal mathematical language. We extend this context

with a dependent elimination constant natrecd ,

natrecd :�C:nat �! Type: �z:C0: �s:(�k:nat: �ih:Ck: C(k + 1)): �n:nat: Cn

together with reduction rules de�ning the �-redexes

8

(in some context where C; z; s; n have the

appropriate types):

� natrecd C z s 0 � z ;

� natrecd C z s (n+ 1) � s n (natrecd C z s n) .

This is precisely expressed in LEGO as follows:

[nat:Type(0)];

[zero:nat];

[succ:nat -> nat];

[natrecd:{C:nat->Type}

7

Strong, that is, because we can eliminate over types, and not merely propositions.

8

cf. Martin-L�of type theory, or G�odel's earlier system T of functionals [37]. We essentially use this language

of primitive recursion in all �nite types as our programming language.

43

{z:C zero}{s:{k:nat}{ih:C k}C (succ k)}{n:nat}C n];

[[n:nat][C:nat->Type][z:C zero][s:{k:nat}{ih:C k}C (succ k)]

natrecd C z s zero ==> d

|| natrecd C z s (succ n) ==> s n (natrecd C z s n)].

This yields a derived iterator and primitive recursor

natiter :��:Type: � �! (� �! �) �! �

and

natrec:��:Type: � �! (nat �! � �! �) �! �

where

9

natiter z s 0 =

def

z

natiter z s (n+ 1) =

def

s (natiter z s n)

natrec z s 0 =

def

z

natrec z s (n+ 1) =

def

s n (natrec z s n);

and an induction principle

natind :��:nat �! Type: �z:�(0): �s:(�k:nat: �ih:�(k): �(k + 1)): �n:nat: �n:

Our methodology suggests we examine derived induction principles for the iterator and

recursor, since we are interested in programs, in this case of the form natiter z s or natrec z s,

together with proven propositions about them. For the iterator, we obtain

�(z) 8y:�: �(y) =) �(s y)

8n:nat: �(natiter z s n)

[z:�; s:� �! �]

and for the recursor

�(z) 8k:nat: 8y:�: �(k) =) �(s k y)

8n:nat: �(natrec z s n)

[z:�; s:nat �! � �! �]:

Since we are interested in building new deliverables from less complex ones, we could of

course use the dependent eliminator natrecd to construct terms of type del

1

, but in doing so

we violate the separation of proofs from programs which distinguishes our approach. So we

package recursion at the Type level with induction at the Prop level in a pair.

We introduce the predicate Nat =

def

�n:nat: true on the natural numbers. For each

constructor of the type, we obtain a corresponding deliverable:

Zero =

def

(�u:unit : 0; �u:unit : �h:Unit u: >

10

):Unit

-

Nat

Succ =

def

(�n:nat: S n; �n:nat: �h:Nat n: >):Nat

-

Nat

9

The type � is, of course, inferred by the typechecker.

44

For the iterator, we obtain

Unit

(z; Z)

-

(t; T) (t; T)

(s; S)

-

(t; T)

Natiter (z; Z) (s; S):(nat; Nat)

-

(t; T)

and the recursor Natrec analogously, where the function component of Natiter (z; Z) (s; S)

(respectively Natrec) is natiter (z()) s (respectively natrec), and the proof component is

obtained from the appropriate derived induction principle above.

These terms are easily obtained by re�nement in LEGO. For example, here is the signi�cant

structure of Natiter, with the uninformative details of the proof component suppressed:

Lego> natiter_del1;

value = [t|Type][T|Pred t][ZZ:del1 Unit T][SS:del1 T T]

[z=ZZ.1 void][Z=ZZ.2][s=SS.1][S=SS.2]

(natiter z s,

natind ([m:nat](Nat m)->T (natiter z s m)) ...)

type = {t|Type}{T|Pred t}(del1 Unit T)->(del1 T T)->del1 Nat T

Example As an example of the use of these combinators, we present a correctness proof of a

doubling function, given by

double =

def

�n:nat: natiter 0 (�k:nat: k + 2) n:

Suppose we wish to show that double n is even for all natural numbers n. Posed in terms of

deliverables, we seek a term of type del

1

Nat Even, whose function component is double.

Using the rule for Natiter above, the problem reduces to �nding:

base case Unit

(z;Z)

-

(nat;Even). We take z =

def

�u:unit : 0, and use the proof that 0 is

even from Section 2;

step case (nat;Even)

(s;S)

-

(nat;Even). We simply use the �rst-order deliverable which we

constructed by composition at the end of Section 2, namely (�n:nat: n+ 2; ssEE).

We thus obtain a non-trivial recursive �rst-order deliverable.

3.9.2 Lists

In much the same way as above, we may de�ne combinators for deliverables over a type of lists.

As before, we extend the context with a type constructor, in this case list:Type

0

�! Type

0

,

together with constructors the usual nil and cons, and a dependent eliminator listrecd . Again

we derive an iterator listiter, a primitive recursor listrec and an induction combinator listind .

When it comes to considering the derived induction principles for the iterator and recursor,

however, we now have the freedom to specify recursions over lists of elements satisfying some

10

Here, > is the term corresponding to true-introduction,

> =

def

��:Prop: �p:�: p

of type true =

def

��:Prop: �) �.

45

predicate, rather than over all lists of the parameter type a. That is, given some speci�cation

(a;A), we obtain a derived speci�cation List (a;A) =

def

(list a; Listof A), where

Listof A (nil a) =

def

true

Listof A (cons x l) =

def

(Ax) ^ (Listof A l)

de�nes Listof A by primitive recursion.

We may then proceed in the same way as above, obtaining constructors

Nil =

def

(�u:unit : nil a; �u:unit : �h:Unit u: >):Unit

-

Listof A

and

Cons:A

-

(Listof A)

Listof A

with function component,

�x:a: �l:list a: cons x l

and proof component

�x:a: �p:A x: �l:list a: �q:Listof A l: pair p q:

Likewise, we package together recursion and an appropriate derived induction principle, to

obtain the following rules for constructing deliverables: an iterator,

Unit

(n;N)

-

(t; T) (a;A)

(c; C)

-

(t; T)

(t; T)

Listiter (n;N) (c; C): (list a; Listof A)

-

(t; T)

;

and analogously a recursor.

4 Second-order deliverables

The system which we have described above amounts to a functional version of the well known

invariants used in proofs of imperative programs. Unfortunately the speci�cation makes no

connection between the input and the output of the function. All we say is that if the input

satis�es property S then the output satis�es property T , but there is no relation between them.

Recalling the example in the introduction, we might specify that a sorting function takes lists

to ordered lists, but we cannot specify that the output is a permutation of the input. The

function might always produce the empty list, which is indeed sorted, but not very interesting.

As a matter of fact the classical invariant proofs have the same weakness, masked by the tacit

assumption that some variable which is carried through the computation does not change its

value. To enforce the constraint that the output bear some relation to the input, we need to

develop a compositional theory in which relations are the basic objects of study, with a notion of

arrow which respects relations, rather than predicates. This gives us a categorical explanation

of the idea that the pre- and postconditions are linked by having a free variahle in common,

that is they are over the same context.

46

4.1 A thought experiment

Suppose we are given some speci�cation 8x:s: 9z:u: R(x; z), and we wish to �nd some function

f :s �! u which satis�es it. In what sense may we re�ne such speci�cations by composition?

Suppose we wish to instantiate f via the composition f = g;h of two functions

s

g

-

t

h

-

u

where t is some intermediate type. Then, following our intuition in the case of predicates, we

anticipate some intermediate speci�cation Q(x; y) [x:s ; y:t], such that g solves

8x:s: 9y:t: Q(x; y);

and h solves

8x:s: (9y:t: Q(x; y)) =) 9z:u: R(x; z):

This last is logically equivalent to

8x:s: 8y:t: Q(x; y) =) 9z:u: R(x; z):

But now we are left in something of a quandary: h, our intended solution, makes no reference

to the intermediate value of y. Also, we have introduced an asymmetry between the rôles of g

and h. A remedy, which underlies the de�nitions 4.2, and 4.3 below, is to separate the rôles of

the independent parameter x and the dependent variables y; z.

We consider relations such as Q;R as the objects of study, for a �xed type s, but allowing

the types t; u to vary. The following provides an appropriate notion of morphism which re-

establishes a symmetry between Q and R.

De�nition 4.1 An arrow from Q(x; y) [x:s ; y:t] to R(x; z) [x:s ; z:u] consists of the following

data:

� a function f :s �! t �! u, that is to say a function of two arguments | this recovers the

missing dependence we observed above;

� a proof �:8x:s: 8y:t: Q(x; y) =) R(x; (f x y)):

The composition of two such arrows

P (x;w)

(g;)

-

Q(x; y)

(h; �)

-

R(x; z)

is de�nable as

(�x;w:s; r: h x (g xw); �x;w:s; r: �p:P (x;w): x (g xw) (�xw p)):

We have now established a de�nition which respects the symmetry of source and target in

our previous analysis of the decomposition of the speci�cation 8x:s: 9z:u: R(x; z). In so doing,

we have generalised the notion of speci�cation, and our old speci�cation corresponds in this

new setting to choosing r =

def

unit , P (x;w) =

def

true, and f

old

=

def

�x:s: f

new

x ().

47

4.2 Basic de�nitions

In view of the above discussion, we relativise speci�cations and �rst-order deliverables to depend

on some input type s. Indeed, by observing that we may uniformly impose some condition S on

the input parameter x:s, without a�ecting the notion of composition, we arrive at the de�nition

of a \second-order" deliverable.

De�nition 4.2 relativised speci�cation

Suppose � ` s : Type, � ` S : s �! Prop. Then a relativised speci�cation with respect to (s; S)

is given by a pair of terms t; R, such that

� � ` t : Type, and

� � ` R : s �! t �! Prop.

De�nition 4.3 second-order deliverable

Suppose � ` s : Type, � ` S : s �! Prop. Given two relativised speci�cations (t;Q) and

(u;R), a second-order deliverable over (s; S) is a term F such that

� ` F : �f : s �! t �! u:8x : s:S(x) =) 8y : t:Q(x; y) =) R(x; (fxy)):

We de�ne Del

2

S QR to be the predicate

�f :s �! t �! u: 8x : s:Sx =) 8y : t:Q(x; y) =) R(x; (fxy)):

De�nition 4.3 embodies the idea that, for each x:s such that Sx holds, (fx; �x) is a �rst-order

deliverable from Qx to Rx, where F =

def

(f; �). This suggests that the study of second-

order deliverables amounts to the study of �rst-order deliverables in an extended context. In

particular we expect to obtain, for a given speci�cation S =

def

(s; S), a category structure on

the second-order deliverables over S. We make a similar de�nition of equality on second-order

deliverables to that given in Section 3 above, the details of which are left to the reader. Then

we can indeed de�ne identities and composition, given by

Identities The identity morphism from (t;Q) to itself over (s; S) is given by

(�x:s: �y:t: y; �x:s: �h:S x: �y:t: �q:Qxy: q)

Composition This is de�ned much as in the thought experiment above (4.1): the composition

of

P (x;w)

(f; �)

-

Q(x; y)

(g;)

-

R(x; z)

over (s; S) is de�nable as

(�x:s: �w:r: g x (f xw); �x:s: �h:S x: �w:r: �p:P xw): x h (f xw) (�xhw p)):

This gives us a category del

2

S.

If (f; �) is a second-order deliverable over (s; S), we typically write

(t;Q)

(f; �)

-

(u;R) [(s; S)] ; or even Q

(f; �)

-

R [S];

since, as usual, the types s; t; u may be inferred by the typechecker. Our notation is intended

to indicate that we are considering deliverables relative to some assumption de�ned by the

speci�cation (s; S). This notation is deliberately intended to echo the style of contexts in

Martin-L�of type theory.

48

4.3 Each del

2

S is a semi-ccc

As in Section 3, we work relative to some context �. We have seen how a second-order deliverable

(f; �) over (s; S) in context � may be viewed as arising from a �rst-order deliverable in the

extended context �; x:s; h:Sx. The conditions of de�nitions 4.2, and 4.3 are intended to enforce

a hierarchy of dependencies in this extended context. The type t must not depend on x or h.

The relation R, considered as a predicate on t in context �; x:s does not depend on h. The

function component f may not depend on h, but the proof component � may do so.

Given these conditions, we may lift the structure in del

1

, by observing that the various

constructions of Section 3 respect this hierarchy of dependencies. The predicates concerned

need to be modi�ed to include an explicit hypothesis Sx. We arrive at the following result.

Theorem 4.1 For each speci�cation S, del

2

S has the structure of a semi-ccc.

Proof We merely sketch some of the constructions, on the basis of the above informal intuition.

Full details are in [25].

Semi-terminal object This is given by the relativised speci�cation

1

S

=

def

(unit ; �x:s: �u:unit : true):

The map !

(t;Q)

, from some relativised speci�cation (t;Q) to 1

S

, has function component

�x:s: �y:t: (), and proof component

�x:s:�h:Sx:�y:t:�p:P xw: >:

Semi-products Suppose we are given two relativised speci�cations (t;Q); (u;R). Then we

may form the relativised speci�cation

(t;Q)� (u;R) =

def

(t� u; �x:s: �p:t� u: (Qx(�

1

p)) ^ (Rx(�

2

p)))

This de�nes a semi-product object in del

2

(s; S). The pairing map is given by

P

(f; �)

-

Q [S] P

(g;)

-

R [S]

P

-

(< f; g >; < �; >)

Q�R [S]

where < f; g > and < �; > are appropriate pairing operations on values and proofs

respectively. Projections are similarly straightforward to de�ne.

Semi-exponentials Just as the predicate Del

1

de�ned a semi-exponential object in the cat-

egory del

1

, we may de�ne a semi-exponential object in del

2

(s; S), using the relativised

speci�cation to which Del

2

gives rise. More precisely, suppose (r; P); (t;Q); (u;R) are

relativised speci�cations. We obtain a relativised speci�cation

R

Q

=

def

(t �! u; �x:s: �f :t �! u: 8y:t:Qx y =) Rx (fy)):

If � ` f : s �! t �! u, and � ` � : Del

2

S QRf , then �; x:s ` �x : R

Q

fx. Moreover,

given

P �Q

F

-

R [S]

49

we obtain

P

�(F)

-

R

Q

[S]

by currying in the obvious way: if F =

def

(f; �), then �(F) =

def

(

^

f;

^

�), where

^

f and

^

�

are appropriate currying operations on values and proofs respectively. We may similarly

de�ne an evaluation map, details of which are left to the imaginative reader: it is rather

less taxing to develop this construction by re�nement in LEGO. Likewise, the proofs

that these data meet Hayashi's conditions for a semi-exponential are best dealt with by

re�nement.

�

4.4 del

2

: an indexed category over del

1

The categorically minded reader now asks herself what relationships exist between the various

categories fdel

2

SjS 2 SPEC

1

g, and to what extent we may elaborate upon the structure of this

collection. In particular, she may ask what is the relationship between del

2

S and del

2

T , given

a �rst-order deliverable from S to T . A moment's pause should convince her that composition

in del

1

should induce an operation on second-order deliverables, since they somehow are no

more than �rst-order deliverables, except that they are de�ned in an extended context. In

other words, we are groping towards the following theorem:

Theorem 4.2 del

2

is an indexed category [19, 1] over del

1

, whose �bres are semi-cccs, with

semi-cc structure strictly preserved by reindexing along arrows in del

1

.

4.5 Pullback functors

The above theorem depends on the existence of pullback functors, which translate, or reindex,

data between the categories del

2

S. The obvious de�nition works, and moreover trivially respects

the equality of objects and arrows, so we do indeed have pullback functors | and they are

functors, not merely semi-functors, since identities and composition are preserved. It is then a

straightforward, and tedious, task to verify that these operations compose, and strictly preserve

the structure in each �bre.

De�nition 4.4 pullback along a �rst-order deliverable

Suppose we are given speci�cations S;T , and a �rst-order deliverable S

(k;K)

T

-

. We de�ne an

operation of pullback along (k;K), where we abuse notation in the standard way by employ-

ing the same symbol for the operation on objects and arrows, as follows: given a relativised

speci�cation Q =

def

(u;Q) with respect to T , let

(k;K)

?

Q =

def

�x:s: �z:u: Q (kx) z;

moreover, given a relativised speci�cation R =

def

(v;R), and a second-order deliverable

Q

(f; �)

-

R [T]

we de�ne (k;K)

?

(f; �) to be the pair

(�x:s: �z:u: f (k x) z; �x:s: �h:Sx: �z:u: �p:Q (k x) z: � (k x) (K xh) z p):

50

Lemma 4.1 (k;K)

?

Q is a relativised speci�cation with respect to S. Moreover, (k;K)

?

(f; �) is

a second-order deliverable from (k;K)

?

Q to (k;K)

?

R.

Lemma 4.2 (k;K)

?

preserves identities and composition.

So, indeed, we do have the the existence of functors between the �bres del

2

. That they are

a satisfactory notion of reindexing requires us to show that they obey the condition H

?

;K

?

�

=

(K;H)

?

. In fact, more is true. We have the following:

Lemma 4.3 The reindexing is strict, in the sense that

H

?

;K

?

= (K;H)

?

:

We now turn to the remainder of Theorem 4.2, namely that the pullback functors preserve the

structure of a semi-ccc in each �bre. As above, we �nd that the structure is preserved strictly.

We examine only the case of exponentials, the cases of products and terminal object being

exactly similar, and rather easier.

Lemma 4.4 In the notation of Theorem 4.1 above, with V

K

S

-

, we have

K

?

(R

Q

) = (K

?

R)

K

?

Q

:

Proposition 4.1 Suppose (r; P); (t;Q); (u;R) are relativised speci�cations with respect to S.

Given

P �Q

F

-

R [S] and V

K

-

S

we have �(K

?

F) � K

?

�(F).

4.6 Second-order deliverables for natural numbers and lists

In the context of second-order deliverables, the situation regarding inductive types is less well

understood. We do not regard this section as giving a de�nitive account, but the examples we

have considered suggest that we have a usable set of combinators for reasoning about recursive

programs.

We take as our guiding motivation the derived induction principles of the last section. Since

we now work in the relativised case, these will be subtly altered by the presence of the induction

variable.

This means, for the case of natural numbers, that we now examine proofs of statements of

the form

11

:

8n:nat: R n (natrec z s n)

where, for some type t, z:t and s:nat �! t �! t. A proof of this, by induction, yields

R 0 z and 8k:nat: 8y:t: R k y =) R (k + 1) (s k y)

as the requisite hypotheses in the base and step cases. We may now recognise the second

hypothesis as the logical component of some second-order deliverable, whose function component

is s.

11

We only consider natrec, since natiter is a degenerate instance of it.

51

The question arises as to how to view the �rst hypothesis R 0 z. Do we regard it as part of

some �rst or second-order deliverable? In a sense, neither, in the choice we have made in the

current version of deliverables. If we examine the derived rule of induction again, but this time

rephrased as

8k:nat: 8y:t: R k y =) R (k + 1) (s k y)

8n:nat: 8z:t: R 0 z =) R n (natrec z s n)

this isolates how we currently view recursions at the second-order level. Namely, we see the func-

tion which recursively applies s to an arbitrary initial value z as the function component of some

second-order deliverable, whose proof component is the proof by induction of the conclusion

8n:nat: 8z:t: R 0 z =) R n (natrec z s n):

As observed above, the hypothesis in the step case of induction arises as the proof component

of a second-order deliverable

R

(s; S)

-

(+1)

?

R [1

nat

]

where (+1)

?

R, otherwise written R[n+ 1=n], is the relation

�n:nat: �y:t: R (n+ 1) y:

In like manner, we write 0

?

R, or R[0=n], for the relation

�n:nat: �y:t: R 0 y:

We thus obtain the second-order deliverable constructor for nat recursions as the following

derived rule

R

(s; S)

-

(+1)

?

R [1

nat

]

Natrec

2

(s; S):0

?

R

-

R [1

nat

]

where Natrec

2

has function component

�n:nat: �z:t: natrec z s n:

The principle reason for making this choice of representation is a pragmatic one, based

partly on experience, and on the behaviour of uni�cation in the typechecker. If we were to

mimic the construction of �rst-order deliverables by induction, we would expect some rule with

one hypothesis for each constructor of the datatype, such as for example

1

(z; Z)

-

0

?

R [1

nat

] R

(s; S)

-

(+1)

?

R [1

nat

]

Natrec

0

2

(z; Z) (s; S):1

-

R [1]

:

We would typically apply such a rule in a top-down proof, to a subgoal of the form

del2 ?n ?m R

In a top-down development, where we may construct deliverables using all the constructions

described above, we would like the instantiation of ?m to be both as general as possible, to allow

for subsequent development, and yet to allow uni�cation to constrain ?m to make the application

valid. Our choice of the above rule for Natrec

2

seems to achieve this. We do not regard this

choice as necessarily de�nitive, however: it merely represents our present view.

52

4.7 Lists

We may extend this analysis to the case of lists, where, as in the case of �rst-order deliverables,

we �nd the richer structure of lists re
ected in a richer collection of predicates and relations.

Firstly, if we work in the �bre del

2

1

list a

, then we obtain in exactly the same way as above,

the following derived rule:

�x:a: R

F

-

(cons x)

?

R [1

list a

]

Listrec

2

F :(nil)

?

R

-

R [1

list a

]

where

(cons x)

?

R =

def

�l:list a: �y:t: R (cons x l) y

and

(nil)

?

R =

def

�l:list a: �y:t: R (nil a) y:

But already in this rule we �nd something new: the outermost � binding. That is to say,

the rule has as its premise a dependent family of second-order deliverables. This phenomenon

arises from the parameter type a of the lists in question. The rule is susceptible to the same

criticisms as the rule for Natrec

2

above, but also the criticism that we have accorded a di�erent

status to the parameter type. In particular, it does not seem to be constrained by any predicate

A we might impose on a. Our justi�cation, as above, is essentially pragmatic. We have found

this rule to be a useful construction, as in the example of minimum �nding in a list.

We can obtain forms of this rule in which the input list is further constrained. We may,

for example, consider the predicate Listof A, for some predicate A on a. In fact, since we

are now considering second-order deliverables, where we can take into account relations which

depend on both the input variable and the result of some computation step, we may extend

this predicate to a dependent version, which we call depListof A, de�ned as follows:

depListof � (nil a) =

def

true

depListof � (cons x l) =

def

(� x l) ^ (depListof � l)

Here � is some relation between values of the variable x varying over the parameter type a,

and lists over a. An example is the predicate Sorted , for which we take � x l =

def

x � l, the

relation that x is less than each element of the list l. This crops up in the example of an insert

sort in the next section.

This introduces an extra hypothesis into the induction scheme we must consider. Suppose

we wish to prove

8l:list a: (depListof � l) =) R l (listrec n c l)

where n:t, c:a �! t �! t. A proof by induction generates the following hypotheses for each

constructor.

base case true =) R nil n, which reduces logically to R nil n. As with the rules for Natrec

2

,

we shall fold this assumption into the rule as the initial relation in the second-order

deliverable we eventually derive.

step case Formally, we obtain

8x:a: 8l:list a: ((depListof � l)) R l (listrec n c l)) =)

53

((depListof � (x :: l))) R (x :: l) (c x l (listrec n c l))):

Two simpli�cations present themselves. The �rst is to replace the explicit mention of

(listrec n c l) by an additional universally quanti�ed parameter y. The second is to

observe that depListof � (cons x l) =) depListof � l. Combining these, we obtain as

an induction hypothesis in the step case

8x:a: 8l:list a: 8y:t: (depListof � (x :: l)) =) R l y =) R (x :: l) (c x l y):

In this form, we see the logical part of a second-order deliverable emerge.

We thus obtain the following derived rule, which yields a second-order deliverable with function

component listrec from a dependent family of second-order deliverables:

F :�x:a: R

-

(cons x)

?

R [(cons x)

?

depListof �]

depListrec

2

F :nil

?

R

-

R [depListof �]

5 Examples

In his thesis [25], the second author considered a number of example developments using the

methodology outlined above, culminating in a machine-checked proof of the Chinese remainder

theorem. This last example is too long to include here, although it perhaps best exhibits some

of the strengths of our approach. We hope to discuss it in a forthcoming paper.

To illustrate the discussion of the previous sections, we give two examples of the use of de-

liverables in small-scale program development. The use of deliverables may seem heavy-handed

and even counter-productive for these smaller examples. The discussion is taken from [25],

where detailed accounts in LEGO of the derivations may be found.

5.1 Finding the minimum of a list

An example which is treated several times in the literature [30, 35]. In our case, it involves a

somewhat unnatural reperesentation, which makes non-trivial use of the semi-cartesian closed

structure in the �bres del

2

.

5.2 The mathematical speci�cation

Suppose R is a decidable total order on some type �, which for the purposes of this example

contains a maximal element a

0

(this avoids having to consider exceptions for the case of the nil

list). We distinguish between R, a boolean valued function, and the relation �a; b:�: R a b = tt,

denoted �

R

. Then we may specify the minimum of a list as follows:

8l:list�:l 6= nil) 9m:�:m 2 l ^ (8a:�:a 2 l) m �

R

a):

We abbreviate the second conjunct to m �

R

l. We may easily express a solution to this

speci�cation in SML as follows (:: adds an element to a list):

fun min a b = if (R a b) then a else b;

fun minelemaux nil = (fn a => a) |

minelemaux (b::l) = (fn a => (min a (minelemaux l b));

fun minelem nil = a_0 |

minelem (a::l) = minelemaux l a;

54

We have explicitly curried the function de�nition of [35]

12

fun minelem (a::nil) = a

| minelem(a::b::l) = min a (minelem (b::l));

since the type system of ECC is too strict to allow such a de�nition based on pattern matching.

Our de�nition is by recursion on the �rst argument l of minelemaux; the corresponding proof

is by induction on l. We seek to verify that minelemaux meets the following speci�cation:

8l:list �: 9f :�! �: 8a:�: fa 2 a :: l ^ fa �

R

a :: l;

The proof for minelem follows by composition with a (suitably relativised) deliverable for ap-

plication.

5.3 The correctness proof

We just consider the veri�cation of minelemaux. As indicated, the proof is by induction.

Base case

9f :�! �: 8a:�: fa 2 a :: nil ^ fa �

R

a :: nil :

The condition fa 2 a :: nil forces us to choose f =

def

�a:�: a. For a re
exive R, the

second conjunct is then satis�ed.

Step case Suppose

9f :�! �: 8a:�: fa 2 a :: k ^ fa �

R

a :: k:

Then for b 2 �, taking g =

def

�a:�: min a (f b), we obtain for all a 2 �, by cases on

R a (f b):

� R a (f b) = true; and hence min a (f b) = a. Now a 2 a :: b :: k, and a �

R

a :: b :: k,

since a �

R

a, and a �

R

(f b) �

R

b :: k, by hypothesis, and the transitivity of �

R

.

� R a (f b) = false; and hence min a (f b) = f b. We have fb 2 b :: k, by hypothesis,

and hence fb 2 a :: b :: k. Again, by hypothesis, f b �

R

b :: k, and fb �

R

a. Hence

fb �

R

a :: b :: k, and we are done.

5.4 The development in terms of deliverables

We give an outline of the proof in the style of a derivation tree, indicating the combinators used

to resolve signi�cant subgoals.

Let

MinAuxSpec =

def

�l:list�: �f :� �! �: 8a:�: fa 2 a :: l ^ fa �

R

a :: l:

Abbreviating the trivial speci�cations �l:list�: true and �l:list�: �u:unit: true to 1 (since they

are terminal objects, respectively in del

1

, and del

2

(list�; 1)), we seek

1

minelemaux

-

MinAuxSpec [1]

12

Sannella in fact treats the maximum of the list.

55

We use composition to enable us to exploit our recursion combinator for second-order de-

liverables over lists of Section 4.6, to package up the proof by induction:

1

base

-

?1 [1] ?1

step

-

MinAuxSpec [1]

1

minelemaux

-

MinAuxSpec [1]

(compose)

and

�a:�: MinAuxSpec

F

step

-

(cons a)

?

MinAuxSpec [1

list �

]

?1

step

-

MinAuxSpec [1]

(Listrec

2

)

which instantiates subgoal ?1 with the speci�cation nil

?

MinAuxSpec.

We resolve the base case of our induction using a pointwise construction, and thereafter

exactly the informal reasoning above. This is su�cient to allow us to completely close this

branch of the derivation.

value = �a:�: a

proof : a 2 [a] ^ a �

R

[a]

1

base

-

nil

?

MinAuxSpec [1]

(pointwise)

This leaves the step case. We extend the context with a free variable b of type �, and then

conclude with another pointwise construction. The proof follows the informal argument above.

value = �a:�: min a (f b)

proof : : : :

MinAuxSpec

F

step

b

-

(cons b)

?

MinAuxSpec [1]

(pointwise)

5.5 Insert sort

We chose insert sort, since it is expressible naturally within primitive recursion, as opposed

to more e�cient algorithms such as Hoare's quicksort, which has a natural expression only in

terms of general recursion.

5.6 The mathematical speci�cation

Informally, this is straightforward enough. For every list l, over some type � which carries

a decidable linear ordering, there exists a sorted list m which is a permutation of l. In a

formal treatment, we must give explicit representations of the notions of \sortedness" and

\permutation". We used an impredicative de�nition of the permutation relation, which we do

not discuss here. The predicate Sorted was de�ned by recursion:

Sorted(nil)

Sorted (l) a � l

Sorted (a :: l)

[a:�; l:list �]

where

a � nil [a:�]

a � l a � b

a � b :: l

[a; b:�; l:list �]

56

As we observed in the section on dependent list recursion, Sorted may be seen as an instance

of the depListof constructor, while the predicate �l:list�: a � l, for a:�, is just an instance of

Listof .

5.7 A correctness proof for insert sort

Here is the ML prototype for the sort that we wrote, with a view to proving correct:

fun listrec n c l = fold (fn (a,m) => c a m) l n;

val swapcons = fn b => (fn p =>

let val (c,m) = p

in (max(c,b), (min(c,b):: m))

end);

fun scons a l = let val (b,m) = listrec (a,nil) swapcons l

in b::m

end;

val sort = listrec nil scons;

and here is its translation into LEGO code:

[swapcons = [A|Type][b:A][p:A # (list A)]

((min p.1 p.2),cons (max p.1 p.2) m)];

[scons = [A|Type][a:A][l:list A]

[p = listrec (a,nil) swapcons l](cons p.1 p.2)];

[sort = listrec nil scons];

We anticipate two levels of induction in the correctness proof for this function, since sort is

de�ned by nested recursion. We recall the derived induction principles for recursive program

phrases which we used to explain recursive deliverables:

for �:(list �) �! � �! Prop; n:�; c:� �! (list �) �! � �! �

l

� l b [a:�; l:list �; b:�]

m

.

.

.

� nil n � (a::l) (c a l b)

8l:list �:� l (listrec n c l)

a consequence of which is the following induction principle for sorted lists, which is just the

proof component of an instance of the depListrec

2

combinator we considered above:

for �:(list �) �! � �! Prop; n:�; c:� �! (list �) �! � �! �

l

Sorted (a::l); � l b [a:�; l:list �; b:�]

m

.

.

.

� nil n � (a::l) (c a l b)

8l:list �: Sorted l =) � l (listrec n c l)

Sorted List Induction

57

This induction principle exempli�es the motivation for second-order deliverables: namely that

a relation � between lists holds, only on the condition that one of them is sorted.

The correctness proof proceeds by application of the �rst induction principle, for the outer-

most recursion: this produces as subgoals

(a) Sorted(nil), nil � nil

(b) 8a : �:8l;m:list �: (Sorted (m) ^ l � m) =)

(Sorted (scons a m) ^ a :: l � (scons a m)).

Now (a) is immediate, and (b) reduces to

8a : �:8m:list �:Sorted (m) =) (Sorted (scons a m) ^ a :: m � (scons a m))

8-introduction extends the context with the assumption [a:�], and in this extended context we

de�ne the relativised speci�cation

a

� �m;n:list �:Sorted (n) ^ a :: m � n:

Now we may apply Sorted List Induction to yield the following subgoals in the new context:

(c) a :: nil � a :: nil ^ Sorted (a :: nil)

(d) 8b : �:8m;n:list �: Sorted (b :: m) ^

a

mn =)

a

(b :: m)(swapcons b m).

(c) is trivial, and (d) reduces to

8b; c : �:8m;n:list �:Sorted (b :: m) ^ Sorted (c :: n) ^ a :: m � c :: n =)

Sorted (min (b; c) :: max (b; c) :: n) ^ a :: b :: m �min (b; c) :: max (b; c) :: n

This last goal rests, apart from some trivial properties of �, on the following:

Lemma 5.1 Suppose a; b; c 2 �, and m;n 2 list � such that:

� Sorted (c :: n);

� c :: n � a :: m;

� b �m.

Then max (b; c) � n.

5.8 The proof recast in terms of deliverables

We have a double recursion in the de�nition of our program, which translates into a nested

list recursion at the level of deliverables. The base case of each induction is resolved with a

simple pointwise construction. So too is the inner step case for the veri�cation of the swapcons

function, with some additional propositional reasoning.

However, there is a point of considerable delicacy in the course of this proof. There is a stage

at which we must shift from a second-order deliverable over 1, the identically true predicate

on lists, de�ned by the outermost recursion, to the inner recursion on second-order deliverables

de�ned over the predicate Sorted . It appears that we must eliminate the input parameter l

using the permutation relation, which moves the condition Sorted(m) from being a condition

58

on a result to being a condition on the input to scons. This is the reduction in case (b) above,

from

8a : �:8l;m:list �:(Sorted (m) ^ l � m) =) (Sorted (scons a m) ^ a :: l � (scons a m)

to

8a : �:8m:list �:Sorted (m) =) (Sorted (scons a m) ^ a :: m � (scons a m)

This shift allows us to apply the principle of Sorted List Induction.

This is rather inconvenient, and moreover it seems that only ad hoc solutions exist to resolve

the di�culty. Rather than attempt a detailed exposition here, we merely remark on the rather

unsatisfactory nature of this step in our derivation. The details are in [25].

We outline the signi�cant re�nement steps in the derivation.

We seek, as a top-level goal

1

insertsort

-

SortSpec [1]

where SortSpec l m =

def

Sorted(m) ^ l � m.

The outermost recursion uses the Listrec

2

combinator, which we apply after splitting the

initial goal with the composition operator.

1

base

-

?1 [1] ?1

step

-

SortSpec [1]

1

insertsort

-

SortSpec [1]

(compose)

�a:�: SortSpec

F

step

-

(cons a)

?

SortSpec [1

list �

]

?1

step

-

SortSpec [1]

(Listrec

2

)

instantiates subgoal ?1 with the speci�cation nil

?

SortSpec.

The base case of this recursion/induction is resolved by a pointwise construction. Moreover,

we can prove that any permutation of the nil list must be equal to nil , and the nil list is

trivially sorted. Hence we obtain the correct instantiation

value = nil

proof : Sorted(nil) ^ nil � nil

1

base

-

nil

?

SortSpec [1]

(pointwise)

The step case is a little more complicated. We �rst introduce the parameter a : � in the

Listrec

2

rule. Recall that the algorithm we considered above contains a let construct.

fun scons a l = let val (b,m) = listrec (a,nil) swapcons l

in b::m

end;

Now composition of deliverables explicates the let construct. For the second component of

this composition, we just use the second-order deliverable analogue of the trivial construction

59

of Section 3. We then fold this function into a relativised speci�cation, with which we pursue

the inner recursion/induction:

SortSpec

-

SortSpec

0

[1]

function = �p:�� list�: �

1

(p) :: �

2

(p)

SortSpec

0

-

(cons a)

?

SortSpec [1]

(functional)

SortSpec

F

step

a

-

cons a

?

SortSpec [1]

(compose)

where SortSpec

0

=

def

(�p:�� list�: �

1

(p) :: �

2

(p))

?

(cons a)

?

SortSpec

Eliding the details, we massage the goal SortSpec

-

SortSpec

0

[1] into a form in which

we may exploit the principle of Sorted List Induction. It turns out that the target speci�cation

remains as SortSpec

0

:

1

-

SortSpec

0

[Sorted]

� � �

SortSpec

-

SortSpec

0

[1]

As indicated above, we are now in a position to use the depListrec

2

combinator. Again, we

preface its application with an appeal to composition.

1

base

0

-

? [Sorted] ?

step

0

-

SortSpec [Sorted]

1

-

SortSpec [Sorted]

(compose)

�b:�: SortSpec

0

G

step

0

-

(cons b)

?

SortSpec

0

[(cons b)

?

Sorted]

?

-

SortSpec

0

[Sorted]

(depListrec

2

)

endlegolist

The proof concludes by considering a pointwise construction in the base case of the induction,

value = (a;nil)

proof : Sorted([a]) ^ [a] � [a]

1

base

0

-

nil

?

(SortSpec

0

) [Sorted]

(pointwise)

and then an account of the veri�cation of the swapcons function in the step

0

case. We omit the

details, which exploit the informal argument of Lemma 5.1.

6 A set-theoretic model

In the foregoing discussion, our emphasis lay on using and constructing deliverables in the

context of a particular type theory and its machine implementation. However, the idea of

deliverables need not be restricted to this particular seeting. We observed that one could

model deliverables in the framework of elementary set theory. The thesis [25] gives a detailed

categorical account of this model, showing how it supports the interpretation of a subtheory of

ECC. Indeed, the model is parametric in the choice of an underlying topos(categorical model

of set theory). We sketch the main ideas. We refer the reader to [25] for a complete account.

60

In this interpretation, a (closed) type is given by a pair of sets (A;A

0

), with A

0

� A. In

particular, the type Prop of propositions, is given by the pair (
;
), where
 is the subobject

classi�er. A morphism between such objects is given by the obvious abstract notion of �rst-

order deliverable, i.e. an arrow on the underlying sets which respects the distinguished subsets.

This data gives us an interpretation of contexts and morphisms between them.

Types in a given context � = (X

0

;X

1

) are given by the relativised speci�cations, i.e. pairs

of sets (A;R), where now R � X

0

� A. Without going into further detail, this structure gives

rise to a �bration, whose �bres essentially consist of the second-order deliverables described

above. Moreover, this �bration has sums, products and a small sub�bration and thus supports

an interpretation of the \Prop:Type

0

:Type

1

00

fragment of ECC. In the presence of set-theoretic

universes, given for example by inaccesible cardinals, we may model the whole of ECC.

7 Related work

Two approaches to a logical account of formal program development are well known. The �rst

relies on annotating programs with logical formulae, and expressing the correctness of a program

in terms of logical deductions. This has its origins in the work of Floyd, Hoare and others in the

'Sixties [14, for example]. The idea of a deliverable clearly has echoes of this idea, but brought

into the functional setting. It also avoids the defect of the Floyd/Hoare style in having object

language and meta-logical variables on the same footing as object variables of our chosen type

theory.

The second approach, based on various intuitionistic type theories, has been to develop

constructive proofs, and use realisability techniques to extract algorithmic information. Both

Martin-L�of type theory [5, 29] and the Calculus of Constructions [6, 30, 31] have been used in

this style. Our work uses ideas from both these schools. Most in
uential has been the theory

of subsets in Martin-L�of type theory. This has been given an eloquent treatment in [29, Chap-

ter 18], to which the reader is referred for a detailed discussion. The central problem in using

constructive proofs as a programming discipline is that proofs contain redundant information.

Dependent types allow us to express logical predicates as types, but do not permit the repre-

sentation of any more recursive functions. For the Calculus of Constructions, this has a precise

statement in the result of Berardi and Mohring [30, 2]:

Theorem CC is conservative over F

!

.

Consequently, CC can represent, in the standard (Church) representation of functions on in-

ductive types, no more functions than F

!

. The proof is based on a syntactic mapping, the

so-called Berardi-Mohring projection. Mohring used this mapping as an extraction function,

which, coupled with the associated realisability predicate, allows a powerful and
exible ap-

proach to program development from proofs. Under this interpretation, an arbitrary type is

interpreted as a type, together with a predicate (the realisability predicate) de�ned over it.

The approach taken in [29] is to separate computationally relevant proofs from the purely

logical, via a translation of the judgments of the basic formal system into multiple judgments.

This translation permits the formation of a \subset type" fx 2 AjB(x)g, for which a reasonable

elimination rule may be given. An attempt to equip the basic theory with such a type (which

may be used to precisely hide the information of the precise nature of a proof that predicate

B(x) holds) yields very unsatisfactory results [33, 34, 29].

Given the basic theory of types and terms in Martin-L�of type theory, the �rst step is to

extend the theory with a notion of proposition and a judgment P true for propositions. This

61

is very straightforward, using propositions as types. A proposition is just a type in the basic

theory. A proposition is true if there is some element inhabiting it, again in the basic theory.

This seemingly innocent proof-irrelevance gives the subset theory its power.

The subset theory now interprets the basic judgment

A set

of Martin-L�of type theory as two judgments in the underlying theory, prescribing

� a set A

0

in the basic theory, and

� a family of propositions A

00

(x) prop [x 2 A

0

], again in the basic theory.

This corresponds to our de�nition of speci�cation in Section 3.

Equality of sets A;B is based on equality of the underlying sets A

0

; B

0

, but uses logical

equivalence of the families A

00

; B

00

. We rejected such a choice, in favour of the decidable relation

of convertibility in ECC.

The membership judgment a 2 A is interpreted in the obvious way: we may derive a 2 A if

we can derive a 2 A

0

and A

00

(a) true in the basic theory. This captures the essential idea, that

the judgments A set and a 2 A should describe subsets of the terms in A

0

in the underlying

theory. In this way, the proofs of the propositionsA

00

(a) are systematically suppressed. It is then

relatively straightforward to see how this allows the interpretation of a subset-type constructor.

How does this compare with our approach? The resulting expressions for the various type

constructors are very similar, compare for example the de�nition of exponential for second-order

deliverables with the �-type in the subset interpretation. We consider explicit proofs of the

propositional parts of our speci�cations, whereas we need only know that some proof may be

derived in the subset theory. However, this seems to be one of the limitations of their approach,

in that we only know that certain derivations in the subset theory arise from certain other

derivations. Our use of �-types, by contrast, means that we can represent the derivations of

deliverables as actual terms within ECC, using the de�nable combinators which code up the

explicit translation. The price we pay seems to be that we have to work with a rather clumsy

language for these terms, as opposed to the conceptual elegance of reusing the basic language

of types and terms in the subset theory.

The NuPrl system, developed by Constable and his co-workers [5], is based on early versions

of Martin-L�of's type theory. In particular, the underlying term calculus is untyped, and the

system has extensional equality types. This has the advantage of suppressing some irrelevant

information in proofs. It also overcomes the limitations on the use of an explicit subset-type

constructor in a theory with intensional equality, exposed in [33, 34]. The sovereign disadvantage

is that the basic judgments of the theory become undecidable, coupled with a proliferation of

well-formedness conditions in the application of the rules.

Recently, Hayashi has also proposed a system based on realisability, which abandons the

usual type constructors �;�, on which most work to date on type theory has been based, in

favour of a more set-theoretic style, with union, intersection and singleton types [13]. The system

he considers is, however, ingenious enough to represent dependent products and dependent

sums. At the same time, the typing rules for union and intersection hide information. This

allows a simple translation or extraction into a programming language with a polymorphic type

discipline. Singleton types seem essential in achieving this harmony between the type system

and the underlying untyped terms.

62

Pavlovi�c, in his thesis [32], elaborates in categorical terms a theory of constructions in which

programs do not depend on proofs of logical propositions. As with the models of Constructions

considered by Hyland and Pitts [18], the emphasis is on extensional systems, rather than the

intensional system we work with here. Proof-theoretic properties seem to be regarded as some-

thing \: : : an implementation would have to answer" [32, p.8].

8 Conclusions

We have described a proof development method which takes as its basic entity a program plus

its correctness proof. If the programs are functional these program proof-pairs admit exactly

the same combination operators as do functions. We have studied the mathematical theory of

such program proof-pairs and the operations which combine them, and we have considered the

case where the pre- and postconditions are contextually linked to express a relationship between

input and output. The combination operations have been coded within the Lego proof system;

a number of examples have been developed in Lego, and some metatheoretic results about the

operations have been proved in Lego.

Acknowledgements

We would like to thank Randy Pollack for the Lego system and Zhaohui Luo for his contribution

to its theoretical underpinning. We also thank our colleagues in the Lego Club for friendly

comments and stimulation. We thank Per Martin-L�of, Gordon Plotkin and Susumu Hayashi

for helpful comments on presentations of this work.

References

[1] J.B�enabou, Fibred categories and the foundations of na��ve category theory , JSL, 1985.

[2] S. Berardi, Type Dependence and Constructive Mathematics, Ph.D. thesis, Dipartimento

di Informatica, Torino, Italy 1990.

[3] N.G. de Bruijn, A survey of the project AUTOMATH , in: [36].

[4] R.M.Burstall and J.H.McKinna, Deliverables: an approach to program development in Con-

structions, in [17], also available as a University of Edinburgh technical report ECS-LFCS-

91-133.

[5] R.Constable et al., Implementing Mathematics with the NuPrl Proof Development System,

Prentice-Hall, New Jersey, 1986.

[6] T.Coquand and G.Huet, Constructions: a Higher-order Proof system for mechanizing

mathematics, in: Proceedings EUROCAL '85, LNCS 203, Springer-Verlag, 1985.

[7] T.Coquand, Metamathematical Investigations of a Calculus of Constructions, in: [16].

[8] P-L.Curien, Categorical Combinators, Sequential Algorithms and Functional Programming ,

Pitman Research Notes in Theoretical Computer Science, Pitman, London, 1986.

63

[9] E.W.Dijkstra, Guarded Commands, Nondeterminacy and Formal Derivation of Programs,

in: Communications of the ACM, Vol. 18, 1975.

[10] J-Y.Girard, Interpretation fonctionelle et �elimination des coupures dans l'arithm�etique de

l'ordre sup�erieure, thesis, University of Paris VII, 1972.

[11] R.Harper and R.A.Pollack, Type checking with universes, in: Theoretical Computer Sci-

ence, Vol. 89, North-Holland, Amsterdam, 1991.

[12] S.Hayashi, Adjunction of semifunctors: categorical structures in nonextensional lambda

calculus, in Theoretical Computer Science, Vol. 41, North-Holland, Amsterdam, 1985.

[13] S.Hayashi, Singleton, Union and Intersection Types for Program Extraction, in: Proceed-

ings of TACS '91, Sendai, Japan, Springer LNCS 526, Springer-Verlag, 1991.

[14] C.A.R.Hoare, An axiomatic basis for computer programming , in: Communications of the

ACM, Vol. 12, 1969.

[15] W.A.Howard, The \formulae-as-types" notion of construction, in: [36].

[16] G.Huet, T.Coquand, C.Paulin-Mohring et al., The Calculus of Constructions, Version 4.10,

Documentation and user's manual , Rapports Techniques no.110, Projet Formel, INRIA-

Rocquencourt, Paris, August 1989.

[17] G.Huet and G.Plotkin, eds. Electronic Proceedings of the First Annual BRA Workshop on

Logical Frameworks, Antibes, May 1990,, distributed electronically to participating BRA

sites, January 1991.

[18] J.M.E.Hyland and A.M.Pitts, The Theory of Constructions: Categorical Semantics and

Topos-theoretic models, in: Proceedings of the AMS Conference on Categories in Computer

Science, Boulder, Colorado, 1986.

[19] P.T.Johnstone and R.Par�e, eds., Indexed Categories and their Applications, Springer

LNM 661, Springer-Verlag, 1978.

[20] J.Lambek and P.J.Scott, An Introduction to Higher-Order Categorical Logic, Cambridge

Studies in Advanced Mathematics no. 7, Cambridge University Press, Cambridge, England,

1986.

[21] Z.Luo, ECC, an Extended Calculus of Constructions, in: Proceedings of the Fourth IEEE

Conference on Logic in Computer Science, Asilomar, California, 1989.

[22] Z.Luo, An Extended Calculus of Constructions, Ph.D. Thesis, Department of Computer

Science, University of Edinburgh, June 1990.

[23] Z.Luo, Program Speci�cation and Data Re�nement in Type Theory , Technical Report ECS-

LFCS-90-131, Department of Computer Science, University of Edinburgh, January 1991.

[24] Z.Luo and R.Pollack, LEGO Proof Development System: User's Manual , LFCS Technical

Report ECS{LFCS{92-211, 1992.

[25] J.H.McKinna, Deliverables: a categorical approach to program development in type theory ,

Ph.D. thesis, University of Edinburgh, 1992.

64

[26] P.Martin-L�of, An Intuitionistic Theory of Types: Predicative part , in: Logic Colloquium

73, North-Holland, Amsterdam, 1975.

[27] P.Martin-L�of, Constructive Mathematics and Computer Programming , in: proceedings of

the Conference on Logic, Philosophy and Methodology of Science VI, 1979, North-Holland,

Amsterdam, 1982.

[28] M.Mendler, The Logic of Design, Ph.D. thesis, University of Edinburgh, forthcoming, 1992.

[29] B.Nordstr�om, K.Petersson, and J.Smith, Programming in Martin-L�of's type theory , Oxford

University Press, 1990.

[30] C.Paulin-Mohring, Extracting F

!

's programs from proofs in the Calculus of Constructions,

in: Proceedings POPL89, ACM, 1989.

[31] C.Paulin-Mohring and B.Werner, Extracting and Executing Programs developed in the In-

ductive Constructions System: a Progress Report , in: [17].

[32] D.Pavlovi�c, Predicates and Fibrations, proefschrift, University of Utrecht, 1990.

[33] A.Salvesen and J.Smith, On the strength of the subset type in Martin-L�of's type theory , in:

Proceedings of the Third LICS Symposium, IEEE, 1988.

[34] A.Salvesen, On Information Discharging and Retrieval in Martin-L�of's type theory , Ph.D.

thesis, Institute of Informatics, University of Oslo, 1989.

[35] D.Sannella, Formal speci�cation of ML programs, LFCS technical report ECS-LFCS-86-15,

Dept. of Computer Science, University of Edinburgh, 1986.

[36] J.P.Seldin and J.R.Hindley, eds., To H.B.Curry, essays in Combinatory Logic, �-calculus

and Formalism, Academic Press, 1980.

[37] S.Stenlund, Combinators, �-calculus and Proof Theory , D.Reidel, Dordrecht, 1972.

65

Pattern Matching with Dependent Types

Thierry Coquand

�

Chalmers University

Preliminary version, June 1992

Introduction

This note deals with notation in type theory. The de�nition of a function by pattern matching

is by now common, and quite important in practice, in functional programming languages (see

for instance [1]). We try here to introduce such de�nitions by pattern matching in Martin-L�of's

logical framework.

1 Statement of the Problem

1.1 A Short Presentation of Martin-L�of's Logical Framework

For a more complete presentation of Martin-L�of's logical framework, which is implemented in

ALF, we refer to the book \Programming in Martin-L�of's Type Theory" [16], chapter 19 and

20. We recall that each type T is of the form (x

1

: A

1

; : : : ; x

n

: A

n

)A where A is Set or of the

form El(a): If A is of the form El(a); we say that T is an small type, and it is a large type

otherwise if A is Set: If a type of a term is of the form (x

1

: A

1

; : : : ; x

n

: A

n

)A; we say that n is

the arity of this term. An instance of a term u of arity n is a term de�nitionally equal to a

term of the form u(v

1

; : : : ; v

n

):

A context is a list of type declaration � = x

1

: A

1

; : : : ; x

n

: A

n

: As in [19], we relativize

all judgements of type theory with respect to a context. An interpretation or contextual

mapping between two contexts � = x

1

: A

1

; : : : ; x

n

: A

n

and � = y

1

: B

1

; : : : ; y

m

: B

m

is a

simulateneous substitution S = fy

1

:= v

1

; : : : ; y

m

:= v

m

g such that

v

1

: B

1

(�); v

2

: B

2

[v

1

] (�); : : : ; v

m

: B

m

[v

1

; : : : ; v

m�1

] (�)

1

:

We write in this case S : � ! �: If M is an open expression in �; we write by simple

juxtaposition MS the result of the substitution S to M: Notice that if A is a type in � then

AS is a type in �; and if a : A (�); then aS : AS (�):

If T

1

: �

1

! � and T

2

: �

2

! �

1

we write T

2

;T

1

: �

2

! � the composition of T

1

and T

2

:

Martin-L�of's logical framework is an open framework: the user can add new constants and

new computation rules.

�

coquand@cs.chalmers.se

1

If v

i

is de�nitionally equal to y

i

; we omit y

i

:= v

i

in the writing of the interpretation; thus, fx := 0g is a

contextual mapping from y : N to x : N; y : N meaning fx := 0; y := yg.

66

For instance, we get the � sets by declaring the constants

2

:

� : (X : Set; (X)Set)Set

pair : (X : Set; Y : (X)Set) (x : X;Y (x)) �(X;Y)

split : (X : Set; Y : (X)Set) (Z : (�(X;Y))Set)

((x : X; y : Y (x))Z(pair(X;Y; x; y)))

(w : �(X;Y))

Z(w)

and asserting the equality (which can be read as a computation rule):

split(A;B;Z; z; pair(A;B; a; b)) = z(a; b) : Z(pair(A;B; x; y))

where

A : Set;

B : (A)Set;

Z : (�(A;B))Set

a : A;

b : B(a)

z : (x : A; y : B(x))Z(pair(A;B; a; b))

The usual cartesian product is de�ned by

A�B = �(A; (x)B) : Set [A : Set; B : Set]

The set of natural numbers is introduced by declaring the constants:

N : Set

0 : N

succ : (N)N

natrec : (C : (x : N)Set; C(0); (x : N; y : C(x)C(succ(x)); n : N)C(n)

and the equalities (which can be read as computation rules):

natrec(C; x; z; 0) = x : C(0)

natrec(C; x; z; succ(a)) = z(a; natrec(C; x; z; a))

where

C : (x : N)Set

x : C(0)

z : (x : N; y : C(x))C(succ(x))

The computation rules generate the de�nitional equality between terms.

2

We allow ourselves to write in general A instead of El(A).

67

Quite important is the distinction between canonical and non-canonical constants. In

the examples above, �; pair N; 0 and succ are canonical constants, but split; natrec and � are

non canonical.

If the type of a canonical constant C is of the form (x

1

: A

1

; : : : ; x

n

: A

n

)Set; we say that C is

a connective. The meaning of a connective C is given by a set of canonical constants of types

of the form (y

1

: B

1

; : : : ; y

m

: B

m

)El(C(a

1

; : : : ; a

n

)); that are called constructors of C: (In the

case of mutual inductive de�nitions, we can have a set of connectives that are simultaneously

de�ned by a set of canonical constants.) By extension, we consider also that connectives are

constructors of the type Set.

A canonical constant whose type is a small type is considered to be a primitive notion, that

is self-justifying. In the example above, 0 and succ are considered to be primitive notions, and

the canonical set N is de�ned by its set of constructors 0 and succ:

We say that a term is in constructor form i� it is de�nitionally equal to a term of the form

c(u

1

; : : : ; u

n

) where c is a constructor of arity n: The constructor c is then uniquely determined.

We say that a term t is directly structurally smaller than a term u i�

� both u and v are of small types and of arity 0;

� u is of constructor form c(a

1

; : : : ; a

n

) and t is de�nitionally equal to one a

j

of arity 0 or

one instance of one a

j

of arity > 0:

Being structurally smaller is de�ned by taking the transitive closure of this relation.

We use in an essential way the \no confusion" property of constructors. This covers two

properties. The �rst is that a de�nitional equality between two terms of the form a(u

1

; : : : ; u

n

)

and b(v

1

; : : : ; v

m

) if a and b are two distinct constructors, cannot hold. The second is that, if c

is a constructor of type (x

1

: A

1

; : : : ; x

n

: A

n

)A; then the equality c(u

1

; : : : ; u

n

) = c(v

1

; : : : ; v

n

) :

A[u

1

; : : : ; u

n

] implies

u

1

= v

1

: A

1

; : : : ; u

n

= v

n

: A

n

[u

1

; : : : ; u

n�1

]:

The non canonical constant � is explicitely de�ned in term of split:

The de�nitions of split and natrec are not explicit, and we refer to these constants as im-

plicitely de�ned constants. The meaning of implicitely de�ned constants is given by their

computation rules.

It is an important problem to give some criteria that ensure the correctness of the addition

of new constants and computation rules. We try here to analyse this problem using the pattern

matching notation introduced in functional languages (see for instance [1]).

1.2 Inductively de�ned connectives

We shall consider only connectives that are inductively de�ned The relation of being structurally

smaller is then expected to be well-founded. We shall take this well-foundness property as a

fundamental assumption on the constructors, without trying to analyse it further here. We

simply mention that the constructors presented in [7, 8] satisfy this well-foundness property.

Here are two counter-examples.

68

The set

V : Set;

with one constructor

� : ((A : Set)(A)A)V:

The polymorphic identity (A; x)x is of type (A : Set)(A)A; and hence the term �((A; x)x)

is of type V: This term is structurally smaller than itself. It follows that the relation of being

structurally smaller is not well-founded.

Likewise, the set

U : Set;

with one constructor

c : (Set)U;

has to be rejected. The reason is however more subtle than for the previous counter-example.

We notice �rst that, were this set accepted, so would be T : (U)Set by T (c(X)) = X : Set: We

could then introduce a set W : Set with only one constructor sup : (x : U)((T (x))W)W (which

is inductively de�ned given U; T). But then sup(c(W); (x)x) is structurally smaller than itself.

The �rst example, suggested by a remark of Per Martin-L�of, shows that the well-foundness

requirement on the relation of being structurally smaller is a stronger requirement than mere

normalisation. Indeed the set V is de�ned by a second-order quanti�cation, and it can be

shown, by the usual reducibility method, that its addition to inductively de�ned sets preserves

the normalisation property.

1.3 Some di�culties with the usual elimination schemas

It is known how to associate to any inductively de�ned connective an elimination constant,

together with its computation rules. This is described for instance in [6]. One can check that

all the examples of implicitely de�ned constants and computations rules described in [16] are

of this form. A �rst criteria for ensuring the correctness of the addition of new constants and

computation rules is to allow only the addition of such elimination constants. Experiments with

restricting the addition of implicitely de�ned constants to be elimination constants have shown

some drawbacks of this approach.

One �rst drawback is that we do not quite get the expected computational behaviour. If we

de�ne for instance add : (N;N)N by add(x; y) = natrec(y; x; (u; v)succ(v)); then add(x; succ(y))

reduces to succ(natrec(y; x; (u; v)succ(v)) and one needs to fold back this expression to get the

expected succ(add(x; y)):

One second drawback is readability. For instance, we want to consider an object such as

half : (N)N de�ned by

half(0) = 0; half(succ(0)) = 0; half(succ(succ(x))) = succ(half(x));

as given directly by these equations, rather than being given by an explicit de�nition which is

a \coding" of this object in term of natrec:

69

The second drawback is in practice quite important. The pattern matching notation is

essential in functional programming languages

3

.

The next anomaly is the necessity to consider higher \sets" for de�ning naturally a function

such as inf : (N;N)N: It is quite surprising that, in order to justify the equations

inf(0; y) = 0; inf(succ(x); 0) = 0; inf(succ(x); succ(y)) = succ(inf(x; y));

one needs to introduce the set of numerical functions.

Another problem appeared for inductively de�ned families. Given a connective with an

arity > 1; there are several possible elimination constants depending on what arguments are

considered to be parameters. For instance, there are two di�erent elimination constants for the

connective Id : (A : Set; x; y : A)Set of unique constructor re
 : (A : Set;x : A)Id(A; x; x): In this

case, it is yet unknown if these two elimination constants are equivalent.

The �rst and, in particular, second drawbacks are strong motivations for allowing the intro-

duction of implicitely de�ned constants de�ned by computation rules that are pattern matching

equations. This seems to solve in general the third anomaly. In an unexpected way, this seems

to have some bearing on the fourth problem, as we will try to explain below.

2 A General Presentation of Pattern Matching

There are two independent requirements for the correctness of the introduction of one implicitely

de�ned constant together with its computation rules. These requirements are only su�cient in

ensuring that the constant does de�ne a total function on the underlying datatype.

The �rst is the requirement that all de�nitions, that may be recursive, are well-founded.

The second is that the equations cover all possible cases of the arguments and do not

introduce ambiguities in the computation. We ensure this by imposing the de�nitions to be

exhaustive and mutually disjoint.

2.1 Well-founded De�nitions

A simple condition ensures the fact that all de�nitions are well-founded, and seem furthermore

su�cient in practice. Let n be the arity of the implicitely de�ned constant f to be de�ned.

The condition is that there exists an index i � n such that, for all equations f(u

1

; : : : ; u

n

) = e;

and all recursive call f(v

1

; : : : ; v

n

) of f in e; the constant f does not occur in v

1

; : : : ; v

n

and the

term v

i

is structurally smaller than the term u

i

:

It would be possible to give a less restrictive condition, by considering instead a lexicographic

extension of the structural ordering. However, this restriction su�ces to recover the usual

elimination schemas. It is also quite simple to ensure that this condition holds.

Notice that this condition provides more general equations than the ones provided by the

usual primitive recursive schema. In the usual primitive recursive schema indeed, the parameters

cannot vary in recursive calls. This is not required here.

3

The earliest, to our knowledge, mention of this notation appears in [2]. A proposal of extending functional

language with an \inductive" case expression, which hence ensures termination, is presented in [3].

70

For instance, this will justify directly the following kind of de�nitions of a a function f :

(N;N)N:

f(0;m) = g(m); f(succ(n);m) = h(n;m; f(n; k(n;m)));

where g : (N)N; h : (N;N;N)N and k : (N;N)N are previously de�ned functions. Notice that the

parameter m changes to k(n;m) in the recursive call of f: This can be done only using the set

of numerical function if we restrict ourselves the usual schema of primitive recursion (see [4]).

2.2 Covering

To analyse further the condition that the de�nitions are exhaustive and mutually disjoint, we

introduce one notion reminiscent of a notion used in Per Martin-L�of's representation of choice

sequences in type theory.

Let us motivate brie
y what follows. We want to add a new implicitely de�ned constant f

of type (x

1

: A

1

; : : : ; x

n

: A

n

)A; together with a set of computation rules. Let � be the context

x

1

: A

1

; : : : ; x

n

: A

n

of arguments of f: We only consider computation rules for f of the form

f(a

1

; : : : ; a

n

) = e : A[a

1

; : : : ; a

n

] (�);

with a

1

: A

1

; : : : ; a

n

: A

n

[a

1

; : : : ; a

n�1

]: We can think of a

1

; : : : ; a

n

as de�ning a contextual

mapping S : � ! �; and this suggests to introduce the notation f(S) = e : AS (�) for such a

computation rule.

With this notation, the conditions on a system of computation rules f(S

j

) = e

j

: AS

j

(�

j

)

will be expressed as conditions on a system of contextual mappings S

j

: �

j

! �: We want to

express that such a system de�nes a \partition of the space de�ned by �:"

We are going to analyse this problem in the same way that pattern matching in ordinary

functional languages is reduced to a succession of case expressions over a variable (see [1]).

We say �rst that a system of contextual mapping S

1

: �

1

! �; : : : ; S

m

: �

m

! � over a

common context � = x

1

: A

1

; : : : ; x

n

: A

n

is an elementary covering of � i� there exists an

index i � n such that

� all terms x

i

S

j

: A

i

S

j

(�

j

); for j � m; are in constructor form,

� if S : � ! � is a contextual mapping such that x

i

S is in constructor form, then there

exists one and only one j � m and T : �! �

j

such that S = T ;S

j

:

This de�nition may look complicated but it is a possible way of specifying what is a case

expression over the ith argument. In the case of a context with only non dependent types, we

recover the usual notion of case expression as in [1]. In the general case however, we cannot

keep the same notion of patterns of [1] (as the examples below will show, we need for instance

to consider non linear patterns), and our abstract de�nition seems necessary.

An instance is the elementary covering de�ned by x = 0 and x = succ(y) (y : N) of the

context x : N:

A second example is the empty set of contextual maps over the context

� = p : Id(N; 0; succ(0)):

71

This is an elementary covering. Indeed, the only constructor of the connective Id is re
; and

a term of the form re
(A; u) cannot be of type Id(N; 0; succ(0)): Otherwise, we would have

Id(N; 0; succ(0)) = Id(A; u; u);

and hence, because Id is a constructor, 0 = u : N and succ(0) = u : N: But this implies

0 = succ(0) : N; which does not hold, because 0 and succ are di�erent constructors.

A more elaborate example is for the context

� = x; y : N; p; q : Id(N; x; y):

It can be checked that, if we de�ne

� = x : N; p : Id(N; x; x);

then the unique contextual mapping

fy := x; q := re
(N; x)g : �! �;

de�nes an elementary covering of �: Indeed, this follows from the fact that re
 is the only

constructor of Id and that if re
(N; u) is of type Id(N; v; w); we have

Id(N; u; u) = Id(N; v; w) : Set;

and hence, since Id is a constructor, we have u = v : N and u = w : N:

We de�ne now what it means for a system of contextual mapping S

i

: �

i

! � into a

common context � to be a covering of � :

� the identity interpretation �! � is a covering of �;

� if S

i

: �

i

! �; for i � p is an elementary covering of � and T

ij

: �

ij

! �

i

; for j � q

i

; is

a covering of �

i

; then T

ij

;S

i

: �

ij

! � is a covering of �:

For instance x = 0; together with x = succ(0) and x = succ(succ(y)) (y : N) de�ne a

covering of x : N:

An example of covering of the context � = x : N; y : N is given by

� fx := 0g : (y : N)! �;

� fx := succ(x

1

); y := 0g : (x

1

: N)! � and

� fx := succ(x

1

); y := succ(y

1

)g : (x

1

: N; y

1

: N)! �:

If we take again our last example of an elementary covering, it can be checked that the

unique contextual mapping

fp := re
(N; x)g : (x : N)! �;

is an elementary covering of �: Hence, the unique contextual mapping

fy := x; p := re
(N; x); q := re
(N; x)g : (x : N)! �;

72

is a covering of � = x; y : N; p; q : Id(N; x; y):

Following Per Martin-L�of's terminology, we call neighbourhood of a context any con-

textual map that is part of a covering of this context. The collection of neighbourhoods of a

covering of a context can be thought of as de�ning a partition of the \space" de�ned by this

context. This notion of neighbourhood corresponds to the notion of patterns used in functional

programming languages: in the case of a context with only non dependent types, we recover

exactly the notion of pattern matching described in [3, 1].

2.3 Su�cient Conditions For Correctness

The su�cient conditions ensuring the correctness of the addition of a new implicitely de�ned

constant f of type (x

1

: A

1

; : : : ; x

n

: A

n

)A; of argument context � = x

1

: A

1

; : : : ; x

n

: A

n

and of

computation rules of the form f(S

j

) = e

j

: AS

j

(�

j

) are that:

� there is no nested occurence of f in e

j

; and all recursive call of f are done on structurally

smaller arguments than the lefthandside arguments (which can be ensured as described

above),

� the system of contextual maps S

j

: �

j

! � is a covering of �:

2.4 Some comments on this method

The method followed here can be described as follows. When justifying a rule

f : (x

1

: A

1

; : : : ; x

n

: A

n

)A;

we analyse exhaustively the possible forms S of the arguments of f; and in each possible case

S; we build a term e

S

of type AS; using constructors and already de�ned constants.

We allow recursive calls of the constant we are de�ning, provided these calls are on struc-

turally smaller arguments.

Naturally associated to this justi�cation of an implicitely de�ned constant

f : (x

1

: A

1

; : : : ; x

n

: A

n

)

is the following computation rule for f: If a given argument (a

1

; : : : ; a

n

) is an instance of the case

S; then the value of f(a

1

; : : : ; a

n

) is the value of the corresponding instance of e

S

: Otherwise,

the argument list of f is not \instantiated enough", and f(a

1

; : : : ; a

n

) cannot be head reduced.

2.5 Some Examples

The function inf : (N;N)N which is de�ned implicitely by:

inf(0; y) = 0; inf(succ(x); 0) = 0; inf(succ(x); succ(y)) = succ(inf(x; y)):

The recursive call is justi�ed by the fact that it is structurally smaller on the �rst (or the

second) argument.

It is standard how to reduce such a de�nition to the usual elimination rules over the type

N; by using the set of numerical functions.

73

By contrast, it is not clear how to represent the following computation rule in term of the

usual elimination rules

4

. We have seen that the unique contextual mapping

fy := x; p := re
(N; x); q := re
(N; x)g : (x : N)! �;

is a covering of � = x; y : N; p; q : Id(N; x; y): It follows that it is correct to add a new constant

f : (x; y : N; p; q : Id(N; x; y))Id(Id(N; x; y); p; q) together with the computation rule

f(x; x; re
(N; x); re
(N; x)) = re
(Id(N; x; x); re
(N; x)) (x : N)

The next example still concerns the connective Id: As we said before, there are two possi-

ble elimination rules over this connective, depending on what arguments are considered to be

paramaters.

The �rst one, with the �rst argument is a parameter, is

F : (A : Set;C : (x; y : A; Id(A; x; y))Set;

d : (x : A)C(x; x; re
(A; x)); a; b : A; c : Id(A; a; b))

C(a; b; c)

of computation rule

F (A;C; d; a; a; re
(A; a)) = d(a) : C(a; a; re
(A; a));

where

A : Set; C : (x; y : A; Id(A; x; y))Set; d : (x : A)C(x; x; re
(A; x)); a : A:

The second one, with the �rst two arguments are parameters, is

G : (A : Set; a : A;C : (y : A; Id(A; a; y))Set;

d : C(a; re
(A; a)); b : A; c : Id(A; a; b))

C(b; c)

of computation rule

G(A; a;C; d; a; re
(A; a)) = d : C(a; re
(A; a));

where

A : Set; a : A; C : (y : A; Id(A; a; y))Set; d : C(a; re
(A; a)):

It can be checked that both constants satisfy the su�cient conditions for correctness given

above. Only the covering condition has to be checked, because there is no recursive call.

The last example is the well-founded set connective:

W : (A : Set; B : (A)Set)Set;

of unique constructor

sup : (A : Set; B : (A)Set; a : A; u : (B(a))W(A;B))W(A;B):

4

This problem has been independently suggested by Thomas Streicher.

74

We can introduce the implicitely de�ned constant

wrec : (A : Set; B : (A)Set; C : (W(A;B))Set;

f : (a : A; u : (B(a))W(A;B); (x : B(a))C(u(x)))C(sup(A;B; u)); t : W(A;B))C(t)

with the computation rule

wrec(A;B;C; f; sup(A;B; a; u)) = f(a; u; (x)wrec(A;B;C; f; u(x)));

where

A : Set; B : (A)Set; C : (W(A;B))Set; f : (a : A; u : (B(a))W(A;B); (x : B(a))C(u(x))):

This is justi�ed since u(x) is structurally smaller than sup(A;B; a; u):

3 How to build coverings

3.1 Uni�cation Problem

If � is a context, A a type in �; and u; v two terms in � of type A; we de�ne a solution of the

uni�cation problem

u = v : A (�)

to be a �nite system of contextual mappings S

j

: �

j

! � such that

� for all j; we have uS

j

= vS

j

: AS

j

(�

j

); and

� if S : �! � is a contextual mapping such that uS = vS : AS (�); then there exists one

and only one j and T : �! �

j

such that T ;S

j

= S:

For a description of the uni�cation problem with dependent types, see [18] and [9]. Since

this problem contains already the similar problem for simply typed lambda-calculus, described

in [13], we cannot expect to have a general algorithm to solve it. It is however possible to

describe a simple algorithm

5

, that has three possible outputs

� the system with no contextual mapping (this ensures that the uni�cation problem has no

solution),

� a system with exactly one contextual mapping (this ensures that the uni�cation problem

has a most general solution),

� the algorithm fails (which corresponds to a di�cult uni�cation problem).

5

This algorithm is similar to the �rst-order uni�cation algorithm, using the fundamental fact that constructors

are one-to-one function.

75

3.2 Splitting Contexts

We give �rst a way to build elementary coverings, as it is implemented in ALF. We cannot ensure

that this generates all possible elementary coverings, but it is not clear yet how to extend this

algorithm, and whether such an extension is needed or not in practice.

Given a context

� = x

1

: A

1

; : : : ; x

n

: A

n

;

and an index i � n such that A

i

is a small type, we describe an operation called splitting the

context � along i: This is an algorithm that tries to produce an elementary covering of � :

� if A

i

is of arity > 0; or if A

i

is not in constructor form, then the algorithm fails to produce

any covering,

� otherwise, A

i

is of the form El(C(u

1

; : : : ; u

n

)) and we can list all the constructors of the

connectives C: For each such constructor c of type (y

1

: B

1

; : : : ; y

m

: B

m

)El(C(v

1

; : : : ; v

m

));

we apply the previous uni�cation algorithm for the equation

C(u

1

; : : : ; u

n

) = C(v

1

; : : : ; v

n

) : Set (x

1

: A

1

; : : : ; x

i�1

: A

i�1

; y

1

: B

1

; : : : ; y

m

: B

m

);

and we collect all the solutions.

Given the fundamental \no confusion" property of constructor, this produces in case of

success an elementary covering of �:

3.3 General Coverings

General coverings can now be built interactively. Given a context �; the user chooses an index

i and tries to split � along i: If the system answers by giving an elementary covering, the user

can then choose to split some of the new produced contexts, and so on, until the user stops

eventually producing by composition a covering of �:

This interactive way of building coverings has been implemented in ALF, and seems in

practice to be quite convenient for the user in ensuring that no cases have been forgotten during

the de�nition of a function by pattern matching. This is in contrast with the usual presentation

in functional languages, where one should write the possible cases, and the compiler warns the

user that some cases have been forgotten.

The following is a semi-algorithm that checks whether or not a system of contextual map-

pings S

j

: �

j

! � is a covering

6

(thanks to G. Huet).

First, the system with only the identity mapping is a covering. Otherwise, choose an index

i such that all x

i

S

j

are in constructor form. Then, if possible, split � along i: If the answer

is an elementary covering T

i

: �

i

! � of �; this induces a partition of the original system

S

j

: �

j

! � into a system of mappings �

j

! �

i

: We then recursively check that each of these

systems is a covering.

6

If we think of a covering as a collection of disjoint \pieces" that form a partition of a space, this semi-

algorithm solves a typical \puzzle" problem. We are given some \pieces" of a space (contextual mapping), and

we try to see whether or not they form a partition of this space.

76

4 Addition of Subsets

Kent Petersson, and independently A. Salvesen, suggested the following notion of subsets which

seems to �t nicely with the present notion of implicitely de�ned constants. We limit here

ourselves to the description of a simple example.

The meaning of a connective, such as N : Set; is given by the set of its constructors

0 : N; succ : (N)N:

It is quite natural to allow the introduction of (direct) subsets of N; that we get simply

by selecting a subset of this set of constructors. For instance, we can introduce the subset

ISZERO : Set with the only constructor 0; and the subset POS : Set with the only constructor

succ:

This notion of subsets �ts well with the present way of de�ning a function by pattern

matching, where one important step is to list the constructors of a given connective.

For instance, the unique computation rule de�nes then correctly an implicitely de�ned

function p : (POS)N:

p(succ(x

1

)) = x

1

(x

1

: N);

because the context x : POS is covered by the contextual mapping x = succ(x

1

) : N (x

1

: N):

We can dually allow the introduction of (direct) supersets of N; that we get by adding new

constructors. Typically, the set of ordinals Ord : Set extends the set N by the addition of one

constructor

lim : ((N)Ord)Ord:

The following computation rules de�ne then correctly an implicitely de�ned function g :

(Ord)N:

g(0) = 0; g(succ(x)) = succ(x); g(lim(u)) = g(u(0)):

This de�nition is justi�ed since u(0) is structurally smaller than lim(u):

We can then de�ne a general inclusion relation between connectives, by taking the transitive

closure of the direct inclusion relation de�ned by the introduction of subsets and supersets. This

is a decidable relation.

As the last example shows, the addition of subsets and supersets introduces some overloading

facilities. These do not however compromise the decidability of the following problems:

� is the expression A a correct type in the context �?

� given a type A in the context �; is the expression a a correct term of type A in the context

�?

as we can convince ourselves by noting that the usual algorithm for these problems apply almost

without changes (using the decidability of the inclusion relation between connectives).

It is hoped that, with these new operations, one can represent rather faithfully the example

presented in [15].

A more elaborate notion of subtypings appears in [11].

77

Conclusion

As an experiment of using pattern matching, we have done in ALF the Gilbreath Trick, presented

by G. Huet last year [17], which is a non trivial inductive proof. This example shows well the

gain in readibility that brings the pattern matching notation. While doing other experiments,

it appeared that a quite useful extension of the system would be the introduction of case

expressions for proofs, where the case is over a term that may not be in variable form. More

generally, the goal seems to be to develop nice enough notations that will hopefully help the

analysis of inductive arguments.

The method we follow here has some similarities with Lars Halln�as notion of partial inductive

de�nitions (see [12, 10]), and with the way proofs are represented in Elf [17]. What we do seems

to correspond to a suggestion of [12] to use this notion as a \basis for a logical framework".

These connections have to be precised.

In the present analysis of pattern matching, a crucial rôle is played by the \no confusion"

property of constructors. In \Language and Philosophical Problems," [20], p. 163 - 167, S.

Stenlund emphasizes from a philosophical perspective the importance of this property.

From a proof-theoretic viewpoint, our treatment can be characterized as �xing the meanings

of the logical constants by the introduction rules. This possibility is discussed in [5], and

constrasted to the dual possibility, which is to �x the meanings of logical constants by the

elimination rules.

References

[1] Augustsson, L. \Compiling Pattern Matching." In Compiling Lazy Functional Languages

Part II, Ph. D. Thesis, Chalmers, 1987.

[2] Burstall, R.M. \Proving properties of programs by structural induction." Computer Jour-

nal 12(1), p. 41 { 48, 1969.

[3] Burstall, R.M. \Inductively De�ned Functions in Functional Programming Languages."

Journal of Computer and System Sciences, vol. 34, p. 409 { 421, 1987.

[4] Colson, L. \About Primitive Recursive Algorithms." LNCS 372, p. 194 { 206, 1989.

[5] Dummett, M. (1991) The Logical Basis of Metaphysics. Duckworth ed.

[6] Dybjer, P. \Inductive Sets and Families in Martin-L�of's Type Theory" Chalmers Report

62, also p. 280-306 in Logical Frameworks, eds. G. Huet and G. Plotkin, Cambridge Uni-

versity Press, 1991.

[7] Dybjer, P. \An inversion principle for Martin-L�of 's type theory." Proceedings of the

Workshop on Programming Logic in Bastad, May 1989, Programming Methodology Group

Report 54, p. 177-190.

[8] Dybjer, P. \Universes and a General Notion of Simultaneous Inductive-Recursive De�ni-

tion in Type Theory." in these proceedings.

78

[9] Elliott, C. M. \Higher-Order Uni�cation with Dependent Function Types." p. 121 { 136,

Proc. Rewriting Techniques and Applications

[10] Eriksson, L.H. \A Finitary Version of the Calculus of Partial Inductive De�nitions." SICS

research report, also to be published in LNCS, Proceedings of the Second Workshop on

Extensions of Logic Programming.

[11] Freeman, T. and Pfenning, F. \Re�nement Types for ML." to appear in ACM SIGPLAN

1991, Conference on Programming Language Design and Implementation.

[12] Halln�as, L. \Partial Inductive De�nitions." Theoretical Computer Science 87, 1991, p. 115

- 142.

[13] Huet, G. \A uni�cation algorithm for typed �-calculus." Theoretical Computer Science,

p. 27 { 57, 1975.

[14] Huet, G. \The Gilbreath Trick: A Case Study in Axiomatization and Proof Development

in the COQ Proof Assistant." Technical Report 1511, INRIA, September, 1991.

[15] Kahn, G. \Natural Semantics." INRIA Technical report, 601, 1987.

[16] Nordstr�om B., Petersson K., Smith. J. M. (1990), Programming in Martin-L�of Type The-

ory. Oxford Science Publications, Clarendon Press, Oxford.

[17] Pfenning, F. \Logic Programming in the LF logical framework" in G.Huet and G. Plotkin,

Logical Frameworks, Cambridge University Press.

[18] Pym, D. Proofs, Search and Computation in General Logic. Thesis, University of Edin-

burgh, November 1990.

[19] Ranta. A. (1988), \Constructing possible worlds," Mimeographed, University of Stock-

holm, to appear in Theoria.

[20] Stenlund, S. (1991), Language and Philosophical Problems. Routledge ed.

79

A proof of normalization for simply typed lambda calculus

written in ALF

Catarina Coquand

�

Preliminary version, august 1992

Abstract

We will in an semantic way de�ne a normalization function by sructural induction for

simply typed lambda calculus. First we write a function that evaluates the semantics of a

term and then we de�ne a coding that gives a term on normal form back. The work has

been done in a fragment of type theory using the pattern matching of ALF[5][3].

Keywords and Phrases: Type Theory, Normalization, Proof Theory, Lambda Calculus.

1 Introduction

One aim of this work has been to show completely formally a proof of normalization of simply

typed lambda calculus in such a way that it can, hopefully, be extended to type theory with

dependent types. Another aim has been to gain experience in working in ALF and for example

has this work suggested the pattern matching now implemented in ALF[3].

We will in this paper present a function by structural induction that computes the normal

form of a term. This function is build up by two functions, one that evaluates the semantics of

a term and one that from the semantics gives an eta-expanded term on normal form back. The

idea that one could write an evaluation function like this was pointed out to me by Th. Coquand

and P. Dybjer and Th. Coquand also pointed out that it was possible to write the coding back

function.

The de�nitions below are all as in the implementation in ALF but the monomorphic type

information has been taken away when this improves the readability. In ALF as it stands now

there is no control that the functions are de�ned by structural induction, but it should be clear

from the de�nitions that this is the case. It should also be clear that the de�nitions follows the

schema presented in [4].

2 The theory

The theory used is Martin L�of's type theory with intensional identity (Id), product (� with the

pairing constructor < a; b >), one element set (T with constructor tt) and cartesian product of

�

Programming Methodology Group. Department of Computer Sciences. Chalmers University of Technology

and University of G�oteborg. S-412 96 G�oteborg, Sweden e-mail catarina@cs.chalmers.se

80

dependent types (� with constructor �.). For a full description of this see [NPS90]. Observe

that we do not de�ne the elimination rules instead we will use the pattern matching of ALF.

We will overload the notation � and � in the text below, in fact we de�ne a � each for

the number of abstractions we make �

n

(A

1

; : : : A

n

; B). We will also write t � t

0

instead of

Id(A; t; t

0

).

3 The syntax

The syntax of the lambda terms are standard except for that we have explicit substitution on

the terms. Having explicit substitution is not essential in this paper but is probably usefull for

future extensions.

3.1 De�nitions of types

The types we have are base type and function type. The set of types

Type : Set

1

is introduced by:

o : Type

A;B : Type

A!B : Type

Types will be named A;B; : : :.

3.2 De�nition of contexts

A context is a list of types and the set of context

Context : Set

is introduced by:

[] : Context

� : Context A : Type

�:A : Context

Context will be named � and � in the text below.

We also de�ne the relation of extensions between contexts

�: (Context;Context) Set

with the constructors:

ext

0

: � � �

e : � � � A : Type

ext

1

(e) : �:A � �

e : � � � A : Type

ext

2

(e) : �:A � �:A

1

Please, do not be confused by this

81

Notice how the third constructor simpli�es the de�nition of shift below.

Extensions will be named e below.

We will now de�ne the transitivity function (or, if one wants, show the transitivity of �)

trans : (e

1

: �

1

� �

2

; e

2

: �

2

� �

3

) �

1

� �

3

The de�nition (or proof) is done by induction �rst on e

1

and in the case ext

2

by induction on

e

2

.

trans(ext

0

; e) = e

trans(ext

1

(e

1

); e

2

) = ext

1

(trans(e

1

; e

2

))

trans(ext

2

(e

1

); ext

0

) = ext

2

(e)

trans(ext

2

(e

1

); ext

1

(e

2

)) = ext

1

(trans(e

1

; e

2

))

trans(ext

2

(e

1

); ext

2

(e

2

)) = ext

2

(trans(e

1

; e

2

))

We have that trans is associative, ie.

trans(e

1

; trans(e

2

; e

3

)) � trans(trans(e1; e2); e3)

we also have that

trans(e; ext

0

) � e

3.3 De�nition of variables, terms and substitutions

As said above the terms are de�ned in a standard way except for the explicit substitution. A

substitution from a context � to a context � (denoted Subst(�;�)) is inuitively a list that

associates to each variable of type A in � a term of type A in �. The substitutions we will

have are the empty, updating, identity, composition, monotonicity and projection substitution.

Variables are de�ned in a deBruijn-index style.

We will de�ne the sets of variables, terms and substitutions

V ar : (Type;Context) Set

Term : (Type;Context) Set

Subst : (Context;Context) Set

where the constructors of V ar are

var

0

: V ar(A;�:A)

v : V ar(A;�)

var

1

(v) : V ar(A;�:B)

and the constructors of Term are

t : Term(A;�) e : � � �

mon(t; e) : Term(A;�) c : Term(o;�)

v : V ar(A;�)

var(v) : Term(A;�)

t : Term(B;�:A)

lam(t) : Term(A!B;�)

82

t

1

: Term(A!B;�) t

2

: Term(A;�)

apply(t

1

; t

2

) : Term(B;�)

t : Term(A;�) s : Subst(�;�)

subst(t; s) : Term(A;�)

and the constructors of Subst are

none : Subst(�; [])

s : Subst(�;�) t : Term(A;�)

fs; tg : Subst(�;�:A)

s id : Subst(�;�)

s

1

: Subst(�

1

;�

2

) s

2

: Subst(�

2

;�

3

)

s comp(s

1

; s

2

) : Subst(�

1

;�

3

)

s : Subst(�;�) e : �

0

� �

s mon(s; e) : Subst(�

0

;�)

s : Subst(�;�) e : � � �

0

s proj(s; e) : Subst(�

0

;�

0

)

Variables, terms and substitutions will benamed v; t; s respectively.

3.4 De�nition of normal terms.

We will now de�ne the set of normal terms. Simultaneously we de�ne the set of applicative

terms, that is, terms on the form apply

n

(t; t

1

; : : : ; t

n

) where t is a variable or a constant and

t

1

; : : : ; t

n

are normal and the set of normal terms where a normal term of base type is an

applicative term and normal term of function type is lam(t) where t normal.

NF

0

: (Type;Context) Set

NF : (Type;Context) Set

with the constructors:

nf c : NF

0

(o;�)

v : V ar(A;�)

nf var(v) : NF

0

(A;�)

t1 : NF

0

(A!B;�) t2 : NF (A;�)

nf apply(t1; t2) : NF

0

(B;�)

NF

0

(o;�)

nf o : NF (o;�)

t : NF (B;�:A)

nf lam(t) : NF (A!B;�)

It is easy to see that there are a direct injection from the normal terms to the ordinary terms.

(Here one would have liked a notion of subsets, but this does not exist in ALF : : : yet.)

We will now de�ne a \shift" - function on normal terms. Roughly \shift" on a variable takes

v : V ar(A;�) to var

n

1

(v) : V ar(A;�:A

1

: : : A

n

).

shift var : (V ar(A;�); � � �)) V ar(A;�)

shift

0

: (NF

0

(A;�); � � �) NF

0

(A;�)

shift : (NF (A;�); � � �) NF (A;�)

83

In the de�nition below we will overload shift, it should be clear from the typing which is

which. Notice in the last case of lam the crucial role of ext

2

shift(v; ext

0

) = v

shift(v; ext

1

(e)) = var

1

(shift(v; e))

shift(var

0

(A;�); ext

2

(�;�; e)) = var

0

(A;�)

shift(var

1

(v); ext

2

(e)) = var

1

(shift(v; e))

shift(nf c(�); e) = nf c(�)

shift(nf var(v); e) = nf var(shift var(v; e))

shift(nf apply(t

1

; t

2

); e) = nf apply(shift(t

1

; e); shift(t

2

; e))

shift(nf o(t); e) = nf o(shift(t; e))

shift(nf lam(t); e) = nf lam(shift(t; ext

2

(e)))

We have

shift(shift(t; e1); e2) � shift(t; trans(e1; e2))

and

shift(t; ext

0

) � t

4 Semantics

The semantics of a term of base type is a term on normal form; for a term of function type it

is for any extension of the context to take a value in the bigger context to a value in the bigger

context. This de�nition is inspired by Kripke semantics seeing contexts with the relation of

extension as possible worlds [2].

V : (Type;Context) Set

V(o;�) = NF (o;�)

V(A!B;�) = � � � �: V(A;�)) V(B;�)

We will name values by v and u below.

We de�ne an environment in which a term will be evaluated. The environment associates a

value for each variable in a context.

E : (Context;Context) Set

E([];�) = >

E(�:A;�) = E(�;�)� V(A;�)

Environments will be named � below.

We de�ne a function that takes a value in � to a value in an extension of the context.

mon

V

: (A 2 Type; V(A;�); � � �) V(A;�)

84

The function is de�ned by induction on the type.

mon

V

(o; t; e) = shift(t; e)

mon

V

(A!B;�(f); e) = � e

0

2 �

0

� �; v 2 V(A;�

0

):f(trans(e

0

; e); v)

In the second case we obtained �(f) by pattern matching on the value that for the function

type is a �.

We have a corresponding function for the environment, de�ned by induction on the �rst

context.

mon

E

: (E(�;�); �

0

� �) E(�;�

0

)

mon

E

([]; e; �) = tt

mon

E

(�:A; e;< �; u >) = < mon

E

(�; e; �); u >

In the second case we obtained < �; u > by pattern matching since the environment is of type

E(�:A;�) which is de�ned as a product.

We de�ne the projection of a context that takes out a part of the environment.

proj

E

: (E(�;�); � � �

0

) E(�

0

;�)

proj

E

(ext

0

; �) = �

proj

E

(ext1(e); < �; u >) = proj

E

(e; �)

proj

E

(ext2(e); < �; u >) = < proj

E

(e; �); u >

Now we are ready to de�ne the semantics of a variable, term and substitution.

[[]]

V ar

: (V ar(A;�); E(�;�)) V(A;�)

[[]]

Term

: (Term(A;�); E(�;�)) V(A;�)

[[]]

Subst

: (Subst(�;�

0

); E(�;�)) E(�

0

;�)

We will only use [[]] below, it should be clear from the typing which is which.

The semantics of a variable is its value in the environment. The semantics of a substitution

is a new environment, where we intuitivaly have that if ft

1

; : : : t

n

g is a substitution from �

to [A

1

: : : A

n

] and � an environment of type E(�;�) then we get the new environment <

[[t

1

]]�; : : : ; [[t

n

]]� >. The semantics of a term should be clear from the de�nition below.

In the de�nitions below � has the type E(�;�).

[[var

0

]] < �; u > = u

[[var

1

(v)]] < �; u > = [[v]]�

[[mon(t; e)]]� = [[t]]proj

E

(e; �)

[[c(�)]]� = nf o(nf c(�))

[[var(v)]]� = [[v]]�

[[lam(t)]]� = � e 2 �

0

� �; v 2 V(A;�

0

):[[t]] < mon

E

(e; �); v >

[[apply(t

1

; t

2

)]]� = ([[t

1

]]� ext

0

[[t

2

]]�))

[[subst(t; s)]]� = [[t]][[s]]�

85

[[none]]� = tt

[[fs; tg]]� = < [[s]]�; [[t]]� >

[[s id]]� = �

[[s comp(s

1

; s

2

)]]� = [[s2]][[s1]]�

[[s mon(s; e)]]� = [[s]]proj

E

(e; �)

[[s proj(s; e)]]� = proj

E

(e; [[s]]�)

We will now de�ne the coding back function get term that takes a value and returns a term

on normal form. We will simultaneously de�ne a function get val that takes an applicative term

to a value. Intuitively get term gives back a term that is eta-expanded on a syntactical level

and get val gives back a value that is eta-expanded on a meta level.

get term : (A 2 Type; � 2 Context; V(A;�)) NF (A;�)

get val : (A 2 Type; � 2 Context;NF

0

(A;�)) V(A;�)

Both are de�ned by induction on the type.

get term

o

(�; u) = u

get val

o

(�; t) = t

get term

A!B

(�; �(f)) = nf lam(get term

B

(�:A; f(ext

1

(ext

0

(�));

get val

A

(�:A; nf var(var

0

)))))

get val

A!B

(�; t) = � e 2 � � �; v 2 V(A;�): get val

B

(�;

nf apply(shift(t; e); get term

A

(�; v)))

We are now ready to de�ne the function that computes a term to its normal form. For this

we de�ne the identity environment

id

E

: (� 2 Context) E(�;�)

that for each variable in the context give its value which we compute with the get val function

above.

id

E

([]) = tt

id

E

(�:A) = < mon

E

(ext

1

(ext

0

(�)); id

E

(�));

get val

A

(�:A; nf var(var

0

)) >

To compute the normal form

nf : (Term(A;�)) NF (A;�)

is now only to compute the semantics of the term in the identity environment and then code

the result back.

nf

A

(�; t) = get term

A

(�; [[t]]id

E

(�))

86

5 Conclusions

We have de�ned a normalization function by structural induction using the pattern matching

of ALF. I feel that using the pattern matching has been essential for the practical possibility

to do this kind of proofs. What I would have liked to have is a notion of subsets and pattern

matching inside an expression, ie some kind of case statement. Ovarloading of names would

have been nice but not essential.

5.1 Future work

We will de�ne a conversion on terms and show that a term converts to the injection of its

normal form. We also want to show that if two terms converts then their semantical values

are extensionally equal and that their normal forms are identical thereby getting a decision

algorithm for conversion (just check that their normal forms are identical).

It might also be intresting to change this proof to use named variables.

6 Acknowledgements

I want to thank Thierry Coquand for giving me the idea of this work and for patiently answering

all my questions.

References

[1] U. Berger and H. Schwichtenberg An inverse of the evaluation functional for typed

�-calculus. Proceedings of LICS 91

[2] Th. Coquand and J. Gallier, A proof of strong normalization for the theory of construc-

tions using a Kripke-like interpretation. Proceedings of the �rst workshop in Logical

Frameworks.

[3] Th. Coquand Pattern Matching with Dependent Types. In this proceedings.

[4] P. Dybjer An inversion principle for Martin-L�of 's type theory. Proceedings of the

Workshop on Programming Logic in Bastad, May 1989, Programming Methodology

Group Report 54, p. 177-190.

[5] L. Magnusson The new implementation of ALF. In this proceedings.

[6] B. Nordstr�om, K. Petersson and J. Smith. Programming in Martin-L�of's Type Theory.

An Introduction. Oxford University Press, 1990.

87

Virtual reduction

Vincent Danos, Laurent Regnier, Paris7

Abstract

We present a reduction of graphs whose edges are labelled by coe�cients in the dynamical

algebra Lambda *, the so-called virtual reduction. We show that the virtual reduction enjoys

the Church-Rosser property. We give a semantic of the virtual reduction by applying the

execution formula of Girard.

We then apply the preceding results to the case of pure-nets and introduce the notion

of virtual cut. We end by relating the virtual cut elimination procedure with the family

reduction of lambda-terms in the sense of Levy.

88

Natural Semantics in Coq. First experiments.

- DRAFT -

Jo�elle Despeyroux

INRIA, Sophia-Antipolis

Andr�e Hirschowitz

University of Nice

August 7, 1992

Abstract

In this paper, we discuss a possible implementation of a Natural Semantics of Mini-Ml

into the Coq system. The aim of this experiment was to study to which point the Coq

theorem prover is well suited to perform proofs in Natural Semantics. To represent our

semantics, we have used the LF encoding of logics, which do not always meets the Coq

requirements for de�nitions of inductive types. We propose here a possible solution to that

problem, which will be developped in the �nal version of the paper.

1 Introduction

In a generic programming environment such as Centaur [BCD

+

88], there is a need for a powerful

theorem prover to be used for describing and for reasoning on object languages and programs.

In the current version of Centaur, the available theorem prover, Theo [Des92], is �rst-order

and not powerful enough for many standard tasks. As benchmarks, let us ask for mechanical

proofs of both the subject reduction theorem for Mini-Ml and the translation from Mini-Ml

to cam. A natural tool to consider for such tasks is the programming language Elf [Pfe89],

based on the logical framework LF [AHM87]. Indeed, the implementation of mini- ml in Elf has

been carefully studied in [MP91], where a corresponding proof of the subject reduction theorem

has been given. However, this proof relies on an induction principle which is de�ned at the

meta-level. A natural tool to consider then is the theorem prover Coq [DFH

+

91], based on the

Calculus of Constructions (CoC) enriched with inductively de�ned types. Indeed, on one hand

Coq fully encompasses LF, and on the second hand, it o�ers a powerful notion of inductive type,

hence it should be able to provide for instance a fully mechanical proof of the subject reduction

theorem for Mini-Ml. In this context, we raise three questions:

1. Is coq powerful enough to perform for instance the benchmarks mentioned above?

2. What could be an e�cient programming style for the implementation of natural semantics

in coq?

3. Which tools or facilities should be coined and added to coq (or build over it) in order to

make it more suitable for semantics of programming languages, more precisely to make it

available in Centaur as a privileged, e�cient and user-friendly theorem prover to be used

for describing and for reasoning on languages and programs?

In this paper, we report on our �rst attempt to derive under coq a fully mechanical proof

of the subject reduction theorem for Mini-Ml.

89

This attempt is based on an implementation of Mini-Ml directly translated from the one

given in LF in [MP91]. The main feature of this implementation is that the chosen syntax is

higher- order.

Let us describe the outcome of this �rst attempt in terms of the questions listed above:

1. We have produced under coq a fairly simple proof of the subject reduction theorem for

Mini-Ml, relying upon two sets of axioms. The �rst one expresses that equality for terms

of the object language is of a syntactic nature. The second one expresses the "only if"

part of our semantic de�nition, in other words it inverts our de�nition. We were not able

to prove these axioms, because the chosen higher-order syntax cannot be de�ned as an

inductive type, which deprives us the suitable induction principle and the corresponding

match constructor. Hence coq will be powerful enough for the above mentioned goal when

we will solve the following puzzle: inside coq, we shall provide our higher- order syntax

with some kind of induction principle (over the structure of the terms) and with a match

constructor and this raises three problems: -what is the "right" induction principle in

this case is not evident. - any match constructor will enlarge the syntax with new terms

which should be excluded through an appropriate selection process. - once designed, the

induction principle, the match constructor and the selection process have to be legitimated

and packed in a user-friendly way. We propose below the basis of a uni�ed solution for

this puzzle.

2. As for programming style, the main choice we have considered concerns syntax. There

are clearly two di�erent approaches: -higher-order syntax, as we have experienced. Here,

the higher-order features of the object language are directly implemented as such in the

meta-language; hence, and this is the main advantage of this approach, the semantic rules

are very simple. The main drawback for this approach is that some of the various objects

we wish to de�ne (for instance exp or type of) are not inductively de�ned in coq's sense.

While this doesn't a�ect the simplicity of semantic rules, it a�ects seriously, as explained

above, the way proofs concerning the object language can be built. Our current conclusion

here is this: for a user- friendly study of languages described by a higher-order syntax, coq

at least need both an extension of the induction principle to some class, to be introduced,

of "weakly-inductive" de�nitions and the automatic (lazy?) generation of some standard

consequences of this stronger induction principle.

-�rst-order syntax: this is the opposite choice. Its main advantage is that it allows the

object language to be introduced as an inductive type, so that we can express the semantics

through recursive de�nitions and build our proofs uniformly by recursion on the subject.

Here, the problem is no more with proofs but with the description of the semantics.

The natural solution seems to be through a suitable coercion of �rst-order terms, once

introduced as an inductive type, to higher-order. Our conclusion here is the need for such

a generic coercion. We do not explore further this approach since the next seems simpler

in any respect.

We propose a new, intermediate approach, which we call middle-order syntax. In �rst-

order syntax, object lambda-expressions are of type say (exp ! exp ! exp), while in

higher-order syntax, they are of type ((exp ! exp) ! exp), and this rules the type exp

out of inductive types. Our intermediate solution here is to type object lambda-expressions

with ((ident ! exp) ! exp). In this approach, the type exp is still inductive, hence it

shares the advantage of the �rst-order syntax with respect to proofs. As for the description

90

of the semantics, it still needs a (generic) coercion to higher- order but this coercion is

much easier since bindings are already understood by middle-order syntax. Indeed, here

we only need to transform terms of type (ident ! exp) into the corresponding terms of

type (exp ! exp). This is the basis of our solution for the above mentioned puzzle.

3. The solution sketched above is far from reaching the current standards of user-friendliness

under Centaur. Hence it seems necessary to build a top-level over coq, designed for the

above mentioned tasks. We now list some of the features which would be welcome for this

top-level.

� at �rst we mention man-machine interface issues: the top-level should integrate cur-

rent progress performed in our team on man-machine interface for theorem provers:

proofs pretty-printed in english, and search directed from this pretty-printed proof

through the mouse.

� next the top-level should accept higher-order syntax and generate the corresponding

middle-order syntax together with the associated induction principle, match operator

and selection process. The middle-order syntax and the selection process should be

hidden to the user.

� moreover, for each syntactic de�nition, a `unicity package' of rules should be gener-

ated expressing that equality for terms of the de�ned type is of a syntactic nature.

� �nally, for each de�nition, an `inverse package' of rules should be generated expressing

the "only if" part of the de�nition. This program raises corresponding theoretical

issues,namely:

� generic translation of higher-order to middle-order.

The rest of the paper is organized as follows: Section 2 is devoted to our proof of our subject

reduction theorem. Section 3 is devoted to middle-order syntax. In section 4, we develop the

discussion started above on the planned top-level.

2 A �rst experiment

2.1 The Mini-Ml language

Mini-ML [CDDK86] consists in the purely applicative part of ML, more precisely a simply

typed �-calculus with polymorphism, constants, products, conditionals, and recursive function

de�nitions. We consider here the slight variation of Mini-Ml de�ned in [MP91], where patterns

are replaced with explicit projections.

Simple programs in Mini-ML are for example, in concrete syntax:

let u = �x:x

in (u u)

or the following simultaneous recursive de�nition:

letrec (even; odd) = (�x:if x = 0 then true else odd (x� 1);

�x:if x = 0 then false else even (x� 1))

in even 3

91

The abstract syntax of Mini-Ml is as follows (identi�ers and naturals are prede�ned sorts):

sorts exp; ident

subsorts exp � ident

constructors

id : identi�ers ! ident

number : naturals ! exp

true; false : ! exp

null; fst; snd : exp ! exp

apply;mlpair : exp� exp ! exp

lambda : ident� exp ! exp

let; letrec : ident� exp� exp ! exp

if : exp� exp� exp ! exp

Numerous descriptions of the semantics -both static and dynamic semantics- of Mini-Ml can

be found in the litterature. The type inference system of Mini-Ml has been �rst described by

Damas and Milner [DM82]. In [Har90], R. Harper consider several presentations of this type

system, together with their encoding in LF. An implementation of both static and dynamic

semantics of Mini-Ml has been given both in the �rst-order language Typol, in [CDDK86], and

in the higher-order language Elf, in [MP91].

2.2 The Mini-Ml implementation in Elf

Since our Coq implementation is based on the Elf implementation, we very brie
y review this

Elf implementation [MP91] in this subsection. The Coq implementation is described in the next

subsection. Both implementations will be given in annex in the �nal version of the paper.

2.2.1 Higher-order abstract syntax

The Elf implementation of Mini-Ml describes the Mini-Ml language, using higher-order ab-

stract syntax. The idea of this approach is to use meta-level variables to represent the object-

level variables. The meta-level �-binder is then naturally used to represent the object-level

binding operators. This could seem non-natural at �rst sight, but has decisive advantages. The

user can use the meta-level application to implement substitutions. The user can avoid the

problem of �-conversion, that the meta-language has solved for him, once for all.

The syntax of Mini-ML is implemented in Elf by the following higher-order abstract syntax:

92

exp : type:

true : exp:

false : exp:

zero : exp:

succ : exp! exp:

If : exp! exp! exp! exp:

null : exp:

lam : (exp! exp)! exp:

app : exp! exp! exp:

mlpair : exp! exp! exp:

fst : exp! exp:

snd : exp! exp:

let : exp! (exp! exp)! exp:

letrec : (exp! exp)! (exp! exp)! exp:

�x : (exp! exp)! exp:

In the case of Mini-Ml, we can mechanically translate a program from the Mini-Ml syntax

to the Elf syntax. The two examples given above will become, in the Elf implementation (a

�-expression is denoted in Elf as []):

let (lam([x]x); [u](app u u))

and:

letrec

([even odd] (lam ([x] if (x = 0; true; (app (app (snd even odd)) (x� 1))));

lam ([x] if (x = 0; false; (app (app (fst even odd)) (x� 1)))));

[even odd]

2.2.2 The type inference system in Elf

[...]

2.2.3 The evaluation rules in Elf

[...]

2.3 A Mini-Ml implementation in Coq

It is now well known (Henk Barendregt. GTS) that the Edinburgh Logical Framework can be

viewed as a sub-system of the Calculus of Constructions. Since we shall use it in this subsection,

let us call ()

�

the injection from Elf to Coq, that is induced by this view. The implementation

we consider here is this natural translation from the Elf implementation, into Coq, except,

maybe, for boolean and natural expressions. All the propositions written in this subsection

should be more formally stated, and proved, in the �nal version of the paper.

93

2.3.1 Syntax

Let us �rst translate the Elf syntax into Coq, without `changing' it. In the de�nition of the

constructor lam : (exp ! exp) ! exp, the �rst occurrence of exp is negative. Such kind of

type is not allowed in Coq as an inductive type. We must `de�ne' the type exp by a list of

`Parameters'. We obtain the following syntax, from which we only give here the �rst lines:

Parameter exp : Set:

Parameter true : exp:

Parameter false : exp:

Parameter zero : exp:

Parameter succ : exp! exp:

Parameter lam : (exp! exp)! exp:

Parameter app : exp! exp! exp:

:::

The following informal proposition states that this Coq implementation of the Mini-Ml

syntax is adequate with respect to the corresponding Elf implementation given above.

Proposition 1. For all closed normal term t in Elf such that `

Elf

t : exp, we have

`

Coq

t

�

: exp

�

. For all closed normal term t

0

in Coq such that `

Coq

t

0

: exp

�

, there exists a term

t in Elf,

with t

0

= t

�

, such that `

Elf

t : exp.

Now, it seems more convenient to use the prede�ned Coq inductive set bool and nat to

represent the Mini-Ml boolean and natural expressions, rather than rede�ning them. Here is

the implementation that we have chosen:

Parameter exp : Set:

Parameter mlbool : bool! exp:

Parameter mlnat : nat! exp:

Parameter lam : (exp! exp)! exp:

Parameter app : exp! exp! exp:

:::

The variation introduced is not a minor variation. vThe term (lam (succ zero)), for example,

is an expression accepted by the �rst syntax, and refused by the second syntax. On the contrary,

induction on booleans, and/or on naturals, is allowed by the second syntax, and not allowed by

the �rst syntax. Another adequacy proposition, of the new syntax, with respect to the original

language, is necessary.

2.3.2 The type inference system

Mini-Ml types are represented as �rst order terms, which are exactly the same terms as in the

Elf implementation:

94

Inductive Set mltype

= tbool : mltype

j tnat : mltype

j arrow : mltype! mltype! mltype

j cross : mltype! mltype! mltype:

Our type-inference rules of Mini-Ml only di�er from the Elf version in the treatment of the

booleans and naturals. The rules are as follows:

Parameter type : exp! mltype! Prop:

Parameter type bool : (e : bool)(type(mlbool e) tbool):

Parameter type nat : (e : nat)(type(mlnat e) tnat):

Parameter type If : (e; e

1

; e

2

: exp)(t : mltype)

(type e tbool)! (type e

1

t)! (type e

2

t)! (type (If e e

1

e

2

) t):

Parameter type null : (type null (arrow tnat tbool)):

Parameter type lam : (E : exp! exp)(t

1

; t

2

: mltype)

((x : exp)(type x t

1

)! (type (E x) t

2

))

! (type (lam E) (arrow t

1

t

2

)):

Parameter type app : (e

1

; e

2

: exp)(t

1

; t

2

: mltype)

(type e

1

(arrow t

2

t

1

))! (type e

2

t

2

)! (type (app e

1

e

2

) t

1

):

Parameter type mlpair : (e

1

; e

2

: exp)(t

1

; t

2

: mltype)

(type e

1

t

1

)! (type e

2

t

2

)! (type (mlpair e

1

e

2

) (cross t

1

t

2

)):

Parameter type fst : (e : exp)(t

1

; t

2

: mltype)

(type e (cross t

1

t

2

))! (type (fst e) t

1

):

Parameter type snd : (e : exp)(t

1

; t

2

: mltype)

(type e (cross t

1

t

2

))! (type (snd e) t

2

):

Parameter type let : (e

1

: exp)(E : exp! exp)(t0; t : mltype)

(type e

1

t0)

! ((x : exp)((t

1

: mltype)(type e

1

t

1

)

! (type x t

1

))! (type (E x) t))

! (type (let e

1

E) t):

Parameter type letrec : (E

1

; E : exp! exp)(t0; t : mltype)

(type (fix E

1

) t0)

! ((x : exp)((t

1

: mltype)(type (fix E

1

) t

1

)

! (type x t

1

))! (type (E x) t))

! (type (letrec E

1

E) t):

Parameter type fix : (E : exp! exp)(t : mltype)

((x : exp)(type x t)! (type (E x) t))! (type (fix E) t):

Rules type lam, type let, type letrec and type �x both contain an occurrence of type in a

negative position that forbids us to de�ne the judgement type as an inductive type.

Proposition 2. For all closed normal terms e and t in Elf such that `

Elf

e : exp

and `

Elf

t : mltype, we have `

Elf

(type e t)) `

Coq

(type

�

e

�

t

�

).

For all closed normal terms e

0

and t

0

in Coq such that `

Coq

e

0

: exp

�

, `

Coq

t

0

: mltype

�

,

and `

Coq

(type

�

e

0

t

0

), there exist two terms e and t in Elf such that e

0

= e

�

, t

0

= t

�

,

and `

Elf

(type e t).

95

2.3.3 The evaluation rules in Coq

Here again, our de�nitions of both the semantic values of Mini-Ml, and the evaluation rules for

Mini-Ml, only di�ers from the Elf de�nition, on the booleans and naturals.

Inductive De�nition value : exp! Prop

= val bool : (e : bool)(value (mlbool e))

j val nat : (e : nat)(value (mlnat e))

j val null : (value null)

j val lam : (E : exp! exp)(value (lam E))

j val mlpair : (E

1

; E

2

: exp)(value E

1

)! (value E

2

)! (value (mlpair E

1

E

2

)):

The evaluation rules for Mini-Ml are as follows:

Inductive De�nition eval : exp! exp! Prop

= eval bool : (e : bool)(eval (mlbool e)(mlbool e))

j eval nat : (e : nat)(eval (mlnat e) (mlnat e))

j eval If t : (e; e

1

; e

2

; v

1

: exp)

(eval e (mlbool true))! (eval e

1

v

1

)! (eval (If e e

1

e

2

) v

1

)

j eval If f : (e; e

1

; e

2

; v

2

: exp)

(eval e (mlbool false))! (eval e

2

v

2

)! (eval (If e e

1

e

2

) v

2

)

j eval null : (eval null null)

j eval lam : (E : exp! exp)(eval (lam E) (lam E))

j eval app : (E : exp! exp)(e

1

; e

2

; v; v

2

: exp)

(eval e

1

(lam E))! (eval e

2

v

2

)! (eval (E v

2

) v)! (eval (app e

1

e

2

) v)

j eval app null t : (e

1

; e

2

: exp)

(eval e

1

null)! (eval e

2

(mlnat O))! (eval (app e

1

e

2

) (mlbool true))

j eval app null f : (e

1

; e

2

: exp)(n : nat)

(eval e

1

null)! (eval e

2

(mlnat (S n)))! (eval (app e

1

e

2

)(mlbool false))

j eval mlpair : (e

1

; e

2

; v

1

; v

2

: exp)

(eval e

1

v

1

)! (eval e

2

v

2

)! (eval (mlpair e

1

e

2

) (mlpair v

1

v

2

))

j eval fst : (e; v

1

; v

2

: exp)

(eval e (mlpair v

1

v

2

))! (eval (fst e) v

1

)

j eval snd : (e; v

1

; v

2

: exp)

(eval e (mlpair v

1

v

2

))! (eval (snd e) v

2

)

j eval let : (e

1

; v

1

; v : exp)(E : exp! exp)

(eval e

1

v

1

)! (eval (E v

1

) v)! (eval (let e

1

E) v)

j eval letrec : (v

1

; v : exp)(E

1

; E : exp! exp)

(eval (fix E

1

) v

1

)! (eval (E v

1

) v)! (eval (letrec E

1

E) v)

j eval fix : (v : exp)(E : exp! exp)

(eval (E (fix E)) v)! (eval (fix E) v):

Proposition 3. For all closed normal terms e and v in Elf such that `

Elf

e : exp

and `

Elf

v : exp, we have `

Elf

(eval e v)) `

Coq

(eval

�

e

�

v

�

).

For all closed normal terms e

0

and v

0

in Coq such that `

Coq

e

0

: exp

�

, `

Coq

v

0

: exp

�

,

and `

Coq

(eval e

0

v

0

), there exist two terms e and v in Elf such that e

0

= e

�

, v

0

= v

�

,

and `

Elf

(eval

�

e v).

96

2.4 Proof of the subject reduction theorem

The Subject Reduction Theorem for our Mini-Ml example can be stated as follows:

Theorem: (e; v : exp)(eval e v)! (t : mltype)(type e t)! (type v t)

The complete proof of the theorem is given in annexB. It proceeds by induction on the

de�nition of eval. It uses both the unicity axioms on exp presented later on in the section

`top-level', and the inversion of the type de�nition presented as axioms in annexB.

2.4.1 Comparaison with the Elf proof

[...]

3 Middle-order implementation of mini-ml

3.1 Syntax

Our syntax uses the empty type for bound variables.

Inductive Set empty = :

This type has no value, but it has an identity [x : empty]x. More generally, it has a natural

morphism towards any Set:

De�nition init : (T : Set)(empty ! T)

= [T : Set][x : empty] < T > Match x with:

Further examples of functions related to the empty type are:

De�nition pr

2:1

= [x1 : empty][x2 : empty]x1

De�nition pr

2:2

= [x1 : empty][x2 : empty]x2

Our middle-order syntax for the Mini-Ml language is as follows:

Inductive Set mexp

= mlbool : bool! mexp

jmlnat : nat! mexp

jlam : (empty ! mexp)! mexp

japp : mexp! mexp! mexp

jlet : mexp! (empty ! mexp)! mexp

j � � �

For instance the term let u = �x:x in (u u) is encoded as

(let ((init mexp); [x : empty](app x x))). In order to express that our syntax is correct, we need

the type, denoted (list t n), of lists of length n of terms of a given type t, together with the

corresponding cons, car and cdr operators.

Now our syntax is correct in the following sense: there is a unique natural collection of

bijections (bij n) between (list exp n) ! exp and (list empty n) ! mexp. This proposition

would be false for a lam operator of type:

lam : (id! mexp)! mexp

97

This collection of bijections is `natural' in the sense that the following properties hold (we only

give here only one of these properties):

(f : (list exp (S n))! exp)((bij n; [x : (list exp n)](lam [y : exp] (f (cons y x))))

= [x : (list empty n)](lam [y : empty](bij (S n) (f (cons y x))))

The bijection (bij 0) is the desired bijection between exp and mexp. This is the �rst instance

where in order to understand higher-order syntax, we enlarge our scope to terms depending on

a list of variables. This feature is recurrent in our work.

3.2 Coercion

Thus, the middle-order syntax is adequate but not suited for semantics. In order to express

the semantics for the term, for instance, (app (lam u) v), it is desirable to have u being of

type mexp ! mexp. For u of type empty ! mexp, we would like to de�ne, inside coq, the

corresponding (coer u) of type (mexp ! mexp). More generally, we look for a coq term coer

of type

(n : nat)((list empty n)! mexp)! ((list mexp n)! mexp)

We were not able to construct this term because the Match operator is not powerful enough.

Fortunately, we were able to construct the inverse coercion, which is su�cient for our purposes,

thanks to higher-order uni�cation.

Now, we would like higher-order uni�cation to operate smoothly when asked for a solution

of the equation < (list empty n)! mexp > (coer X) = f , namely we would like it to �nd the

single `natural' solution, the only one which does not use (more than f) the Match constructor.

For that, the only way seems to de�ne a predicate restr which rules out the non-natural solutions.

The predicate (restr f) means that f has no Match operator except possibly in its subtrees of

type nat or bool.

[...]

3.3 Semantics

We de�ne here the corresponding type inference rules and evaluation rules of Mini-Ml, using

the new middle-order syntax. [...]

4 Top-level

We discuss here some features of the top-level we plan to built over Coq.

4.1 Unicity package. Inverse package

Coq proofs in Natural Semantics seem to be relatively short terms, provided that two `tools' are

given. The �rst tool we need is the ability to generate some `intuitive' facts about an -inductive

or not- de�nition of a syntax, in the case where the user asks for them. The intuitive facts about

the exp syntax simply say that the type exp de�ne trees. With the help of a Match on exp, we

could easily prove those facts. But, since in our example, exp is not an inductive de�nition, we

must give them as axioms:

98

Axiom uniq mlpair : (x; y; x

0

; y

0

: exp)(hexpi(mlpair x y) = (mlpair x

0

y

0

))

! ((hexpix = x

0

) ^ (hexpiy = y

0

)):

Axiom uniq arrow : (x; y; x

0

; y

0

: mltype)(hmltypei(arrow x y) = (arrow x

0

y

0

))

! ((hmltypeix = x

0

) ^ (hmltypeiy = y

0

)):

Axiom lam mlpair : (E : exp! exp)(x; y : exp)(hexpi(lam E) 6= (mlpair x y)):

Axiom bool mlpair : (e : bool)(x; y : exp)(hexpi(mlbool e) 6= (mlpair x y)):

Axiom nat mlpair : (e : nat)(x; y : exp)(hexpi(mlnat e) 6= (mlpair x y)):

Axiom null mlpair : (x; y : exp)(hexpinull 6= (mlpair x y)):

The second tool we need is the compilation of the `inversion' of a set of inference rules,

declared as an -inductive or not- de�nition. In the case of an inductive de�nition, there is work

in progress in the Formel team at Inria-Rocquencourt (Samuel Boutin). The simplest example

is the inversion of the value judgment, which reduces to the inversion of rule val mlpair:

Theorem value inv mlpair : (e1; e2 : exp)(value (mlpair e1 e2))! ((value e1) ^ (value e2))

As an example, we give in Annex A a proof of the above inversion rule. As another example,

the inversion of the Mini-Ml type de�nition is given in AnnexB.

4.2 Proofs in english

Pretty-print from Coq proof terms into proofs written in english, in a more conventional math-

ematical style. [...]

As an example, let us give a short proof in Coq. Given the previous semantic de�nitions, we

can prove that `the evaluation of a Mini-Ml expression returns a value':

(E; V : exp)(eval E V)! (value V)

The proof proceeds by induction on the length of the proof of (eval E V). It uses both the

unicity and the inverse packages given as an example in the previous subsection.

Goal (E,V:exp) (eval E V) ! (value V).

Induction 1.

Intro; Apply val bool.

Intro; Apply val nat.

Trivial. Trivial.

Apply val null.

Intro; Apply val lam.

Trivial.

Intros; Apply val bool.

Intros; Apply val bool.

Intros; Apply val mlpair.Assumption.Assumption.

Intros; Apply proj1 with (value v2); Apply value inv mlpair; Assumption.

Intros; Apply proj2 with (value v1); Apply value inv mlpair; Assumption.

Trivial.

Save ml eval returns value.

[...]

99

4.3 From higher-order to middle-order and the selection process

Generalisation of the work done on the Mini-Ml example. [...]

4.4 Induction, Match operator

In the de�nition of the constructor lam : (exp ! exp) ! exp, the �rst occurrence of exp is

negative. Such kind of type is not allowed in Coq as an inductive type. The reason for that is

that, whenever the user de�ne an inductive type, Coq generates an iteration operator Match on

that type, together with an induction principle for that type, in a framework which does not

naturally extend to that case.

The problem concerning the Match function is that exp ! exp de�ne all functions from exp

to exp, including those that use a Match. With the help of a Match function, we could build a

non-normalisable term, or at least a term which has no counter-part in the model we have in

mind. In the case of exp, we could write for example an analogue of � (which was given to us

by Christine Paulin):

d = (lam[x : exp] (match x with � � � (lam f)! (f x) � � �))

where (d d) rewrites to (d d)

The problem concerning the induction is that an induction principle is not derivable from

such de�nition, at least in the usual sense. A straightforward induction principle for exp might

be written as:

8P : exp! Prop

(8a; b : exp (P a)! (P b)! (P (app a b)))

! (8f : exp! exp (8a : exp (P a)! (P (f a)))! (P (lam f)))

! � � �

! 8x : exp (P x):

This principle can be written in Coq, but it seems di�cult to use it in Coq, because of the

`non-denotational' lam case.

We propose here a less readable but more usable principle. This principle originates in the

remark that a Mini-Ml expression depends on n variables. The principle is thus de�ned on an

expression depending on a list of expressions of length n (denoted as (exp n)):

8n : nat;8P : ((expn)! exp)! Prop

(8n : nat;8a; b : ((expn)! exp) (P n a)! (P n b)! (P n �x:(app (a x) (b x))))

! (8n : nat;8f : (((expn)! exp)! ((expn)! exp))

(P (S n) f)! (P n �y: (lam �x: (f (cons x y)))))

! � � �

! 8x : ((expn)! exp) (P x):

We have discussed here the problem of induction on the type exp example. The discussion

naturally extends to the case of a type representing a judgment. [...]

100

5 Conclusion

To implement our logical systems in the Calculus of Constructions, we have chosen the encoding

de�ned in the LF framework. However, as it is pointed out in [PMP89], we know that in some

cases, as for example the cases from our Mini-Ml example, or simply the �I rule of �rst order

logic:

� I : [A;B : term]((true A)! (true B))! (true (A � B))

this encoding cannot be directly used in an inductive de�nition. Despite that fact, as in the Elf

implementation of Mini-Ml, we would like to use this LF encoding, which seems very natural

to us.

Our �rst idea has been to write a top-level to Coq -or an `interface' for Coq, rather than

modifying it. The basis of this top-level is a new programming style for syntax, which we call

middle-order syntax. This style is su�ciently higher-order for handling bindings and never-

theless de�nes object syntaxes as inductive types. The cost for that is that, since the match

operator enlarges the syntax with new terms which have to be excluded, we have to write an

appropriate selection process. We hope this to be hidden in the top-level. This idea will be

developped in the �nal version of the paper.

Another idea is to add a new operator in the Coq language, called a restrictive arrow, that

we denote here ,!. Roughly speaking, exp ,! exp will denote those functions from exp to exp

that are only built from the constructors of exp. Similarly, (true A) ,! (true B) will denote

those proofs that are only built from the constructors of true. There is work in progress on that

subject by Jo�elle Despeyroux, Chet Murphy and Frank Pfenning.

In the future, we would like to build proofs in Coq, for example, under Centaur. An interface

for Coq is under development in our team. Our aim is to write Natural Semantics de�nitions in

an extended Typol, so as to translate them into Coq terms. A natural continuation of this work

will be to see proofs as proof trees in Natural Semantics as well as proof terms in the Calculus

of Constructions.

101

6 Annex A: Proof of an inversion rule

We give here the proof of the following theorem:

Theorem value inv mlpair : (e

1

; e2 : exp)(value (mlpair e

1

e2))! ((value e

1

) ^ (value e2))

In this proof, we follow the method suggested in the Coq's user's manual. We �rst de�ne a

suitable constant. Then we prove a general property, from which the desired inversion rules will

be derivable as simple proofs, or even just instanciations.

De�nition inv = [e,e1,e2:exp] (h exp ie=(mlpair e1 e2)) ! ((value e1) ^ (value e2)).

Goal (e,e1,e2:exp) (value e) ! (inv e e1 e2).

Induction 1.

Intro; Red; Intro; Absurd (h exp i(mlbool e0)=(mlpair e1 e2)).

Apply bool mlpair. Assumption.

Intro; Red; Intro; Absurd (h exp i(mlnat e0)=(mlpair e1 e2)).

Apply nat mlpair. Assumption.

Red. Intro.

Absurd (h exp inull=(mlpair e1 e2)).

Apply null mlpair. Assumption.

Intro; Red.

Intro; Absurd (h exp i(lam E)=(mlpair e1 e2)).

Apply lam mlpair; Assumption. Assumption.

Intros; Red; Intro; Cut ((h exp iE1=e1) ^ (h exp iE2=e2)).

Intro; Apply conj.

Replace e1 with E1. Assumption.

Apply proj1 with h exp iE2=e2; Assumption.

Replace e2 with E2. Assumption.

Apply proj2 with h exp iE1=e1; Assumption.

Apply uniq mlpair; Assumption.

Save value inv.

Goal (e1,e2:exp)(value (mlpair e1 e2))!((value e1) ^ (value e2)).

Intros. Cut (h exp i(mlpair e1 e2)=(mlpair e1 e2)).

Change (inv (mlpair e1 e2) e1 e2).

Apply value inv; Assumption.

Trivial.

Save value inv mlpair.

102

7 Annex B: Proof of the Subject Reduction Theorem

We �rst give the inverse de�nition of type, that we need for the proof of our theorem. The

listing of the proof itself follows.

Axiom type inv bool : (e : bool)(t : mltype)(type (mlbool e) t)! hmltypeit = tbool:

Axiom type inv bool

1

: (e : bool)(t : mltype)(hmltypeit = tbool)! (type (mlbool e) t):

Axiom type inv nat : (e : nat)(t : mltype)(type (mlnat e) t)! hmltypeit = tnat:

Axiom type inv If : (e; e

1

; e

2

: exp)(t : mltype)(type (If e e

1

e

2

) t)

! ((type etbool) ^ (type e

1

t) ^ (type e

2

t)):

Axiom type inv null : (t : mltype)(type null t)! hmltypeit = (arrow tnat tbool):

Axiom type inv lam : (E : exp! exp)(t

1

; t

2

: mltype)(type (lam E) (arrow t

1

t

2

))

! ((x : exp)(type x t

1

)! (type (E x) t

2

)):

Axiom type inv lam

0

: (E : exp! exp)(t : mltype)(type (lam E) t)

! hmltypeiEx([t

1

: mltype]

hmltypeiEx([t

2

: mltype](hmltypeit = (arrow t

1

t

2

)))):

Axiom type inv app : (e

1

; e

2

: exp)(t

1

: mltype)(type (app e

1

e

2

) t

1

)

! hmltypeiEx([t

2

: mltype](type e

1

(arrow t

2

t

1

)) ^ (type e

2

t

2

)):

Axiom type inv mlpair : (e

1

; e

2

: exp)(t

1

; t

2

: mltype)(type (mlpair e

1

e

2

) (cross t

1

t

2

))

! ((type e

1

t

1

) ^ (type e

2

t

2

)):

Axiom type inv mlpair

0

: (e

1

; e

2

: exp)(t : mltype)(type (mlpair e

1

e

2

) t)

! hmltypeiEx([t

1

: mltype]

hmltypeiEx([t

2

: mltype](hmltypeit = (cross t

1

t

2

)))):

Axiom type inv fst : (e : exp)(t

1

: mltype)(type (fst e) t

1

)

! hmltypeiEx([t

2

: mltype](type e (cross t

1

t

2

))):

Axiom type inv snd : (e : exp)(t

2

: mltype)(type (snd e) t

2

)

! hmltypeiEx([t

1

: mltype](type e (cross t

1

t

2

))):

Axiom type inv let : (e

1

: exp)(E : exp! exp)(t : mltype)(type (let e

1

E) t)

! (hmltypeiEx([t0 : mltype](type e

1

t0))

^(x : exp)((t

1

: mltype)(type e

1

t

1

)! (type x t

1

))

! (type (E x) t)):

Axiom type inv letrec : (E

1

; E : exp! exp)(t : mltype)(type (letrec E

1

E) t)

! (hmltypeiEx([t0 : mltype](type (fix E

1

) t0))

^(x : exp)((t

1

: mltype)(type (fix E

1

) t

1

)! (type x t

1

))

! (type (E x) t)):

Axiom type inv fix : (E : exp! exp)(t : mltype)(type (fix E)t)

! ((x : exp)(type x t)! (type (E x) t)):

103

Goal (e,v:exp)(eval e v) ! (t:mltype)(type e t)!(type v t).

Induction 1.

Trivial. Trivial. Do 4 Intro; Intros ve0 te0 ve1 te1 t tIf; Apply te1;

Apply proj1 with (type e2 t); Apply proj2 with (type e0 tbool);

Apply type inv If; Assumption.

Do 4 Intro; Intros ve0 te0 ve2 te2 t tIf; Apply te2;

Apply proj2 with (type e1 t); Apply proj2 with (type e0 tbool);

Apply type inv If; Assumption.

Trivial. Trivial. Do 5 Intro; Intros vlam tlam ve2 te2 vApp tApp t tapp; Apply tApp;

Cut h mltype iEx([t2:mltype](type e1 (arrow t2 t))^(type e2 t2)).

Intro Ext2; Elim Ext2; Intro t2; Intro tE1tE2; Apply type inv lam with t2.

Apply tlam; Apply proj1 with (type e2 t2); Assumption.

Apply te2; Apply proj2 with (type e1 (arrow t2 t)); Assumption.

Apply type inv app; Assumption.

Do 3 Intro; Intro te1; Do 3 Intro; Intro tapp;

Cut h mltype iEx([t2:mltype](type e1 (arrow t2 t))^(type e2 t2)).

Intro Ext2; Elim Ext2; Intro t2; Intro te1e2; Apply type inv bool1;

Apply proj2 with h mltype it2=tnat; Apply uniq arrow; Apply type inv null; Apply te1;

Apply proj1 with (type e2 t2); Assumption. Apply type inv app; Assumption.

Do 4 Intro; Intro te1; Do 3 Intro; Intro tapp;

Cut h mltype iEx([t2:mltype](type e1 (arrow t2 t))^(type e2 t2)).

Intro Ext2; Elim Ext2; Intro t2; Intro te2e1; Apply type inv bool1;

Apply proj2 with h mltype it2=tnat; Apply uniq arrow; Apply type inv null; Apply te1;

Apply proj1 with (type e2 t2); Assumption. Apply type inv app; Assumption.

Do 4 Intro; Intros ve1 te1 ve2 te2 t te1e2;

Cut h mltype iEx([t1:mltype]h mltype iEx([t2:mltype](h mltype it=(cross t1 t2)))).

Intro Ext1; Elim Ext1; Intro t1; Intro Ext2; Elim Ext2; Intro t2; Intro tc;

Replace t with (cross t1 t2). Apply type mlpair.

Apply te1;Apply proj1 with (type e2 t2);Apply type inv mlpair; Elim tc; Apply te1e2.

Apply te2;Apply proj2 with (type e1 t1);Apply type inv mlpair; Elim tc; Apply te1e2.

Apply type inv mlpair0 with e1 e2; Assumption.

Do 3 Intro; Intros ve0 te0 t tf; Cut h mltype iEx([t2:mltype](type e0 (cross t t2))).

Intro Ext2; Elim Ext2; Intros t2 te0c; Apply proj1 with (type v2 t2);

Apply type inv mlpair;Apply te0;Assumption. Apply type inv fst; Assumption.

Do 3 Intro; Intros ve0 te0 t ts; Cut h mltype iEx([t1:mltype](type e0 (cross t1 t))).

Intro Ext1; Elim Ext1; Intros t1 te0c; Apply proj2 with (type v1 t1);

Apply type inv mlpair;Apply te0;Assumption. Apply type inv snd; Assumption.

Do 4 Intro; Intros ve1 te1 vApp tApp t tlet; Apply tApp;

Cut h mltype iEx([t0:mltype](type e1 t0))^

(v1:exp)((t1:mltype)(type e1 t1)!(type v1 t1))!(type (E v1) t).

Intro A;Elim A;Intro;Intro B;Apply B;Do 2 Intro;Apply te1;Assumption.

Apply type inv let; Assumption.

Do 4 Intro; Intros v�x t�x vApp tApp t tletrec; Apply tApp;

Cut h mltype iEx([t0:mltype](type (�x E1) t0))^

(v1:exp)((t1:mltype)(type (�x E1) t1)!(type v1 t1))!(type (E v1) t).

Intro A;Elim A;Intro;Intro B;Apply B;Do 2 Intro;Apply t�x;Assumption.

Apply type inv letrec; Assumption.

Do 2 Intro; Intros vApp tApp t t�x; Apply tApp; Apply type inv �x; Assumption.

Save ml subject red.

104

References

[AHM87] A. Avron, F. Honsell, and A. Mason. Using typed �-calculus to implement formal

systems on a machine. Technical Report ECS-LFCS-87-31, Edinburgh University,

Edinburgh, July 1987.

[BCD

+

88] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual.

Centaur: the system. In Proceedings of the 3rd Symp. on Software Development

Environments, November 1988, Boston, USA, 1988. also available as a Technical

Report 777, Inria-Sophia-Antipolis, France, December 1987.

[CDDK86] D. Clement, J. Despeyroux, Th. Despeyroux, and G. Kahn. A simple applicative

language: Mini-ml. In Proceedings of the Symposium on Lisp and Functional Pro-

gramming, 1986.

[Des92] J. Despeyroux. Theo: an interactive proof development system. Scandinavian Jour-

nal on Computer Science and Numerical Analysis (BIT), special issue on `Program-

ming Logic', containing the Proceedings of the Workshop on Programming Logic,

Bastad, Sweden, May 21-26 1989, 32:15{29, 1992. a preliminary version is available

as a Research Report RR-887, Inria-Sophia-Antipolis, France, August 1988.

[DFH

+

91] G. Dowek, A. Felty, H. Herbelin, G. Huet, Ch. Paulin, and B. Werner. The coq

proof assistant user's guide, version 5.6. Technical Report 134, Inria, Rocquencourt,

France, December 1991.

[DM82] L. Damas and R. Milner. Principal type-schemes for functional programs. In Pro-

ceedings of the POPL ACM Conference on Principles of Programming Languages,

pages 207{212, 1982.

[Har90] R. Harper. Systems of polymorphic type assignment in LF. Technical Report CMU-

CS-90-144, Carnegie Mellon University, Pittsburgh, Pennsylvania, June 1990.

[MP91] S. Michaylov and F. Pfenning. Natural semantics and some of its meta-theory in elf.

In Lars Halln"as, editor, Proceedings of the Second Workshop on Extentions of Logic

Programming, Springer-Verlag LNCS, 1991. also available as a Technical Report

MPI{I{91{211, Max-Planck-Institute for Computer Science,Saarbrucken, Germany,

August 1991.

[Pfe89] F. Pfenning. Elf: A language for logic de�nition and veri�ed metaprogramming. In

Proceedings of the fourth ACM-IEEE Symp. on Logic In Computer Science, Asilo-

mar, California, USA, June 1989.

[PMP89] Ch. Paulin-Mohring and F. Pfenning. Inductively de�ned types in the calculus of

constructions. In Proceedings of the Fith International Conf. Mathematical Foun-

dations of Programming Semantics, New Orleans, Luisiana, USA, pages 209{228,

1989.

105

Universes and a General Notion of Simultaneous

Inductive-Recursive De�nition in Type Theory

(Draft)

Peter Dybjer

�

Chalmers University of Technology

August 1992

Abstract

In Martin-L�of's type theory we may de�ne new sets (and families of sets) inductively,

and new functions by recursion on the way the elements of these sets are generated. The

schema for such de�nitions that we considered before includes all the standard set formers

of type theory with the exception of universes.

Here we give an extended schema which also covers universes �a la Tarski. These consist

of simultaneous inductive de�nitions of sets of codes for small sets and recursive de�nitions

of decoding functions. This extension is a small modi�cation of the old schema and includes

a general formulation of the notion of a simultaneous inductive-recursive de�nition.

There are several interesting applications of this extension. Here we show how to obtain

an external universe hierarchy, where each level in the hierarchy faithfully re
ects the previ-

ous level. We also show how to obtain the universe constructions of Gri�or and Palmgren.

These include an internal unfaithful universe hierarchy and a super universe.

Other examples are the construction of Frege structures in type theory, and various

constructions relevant to the formalization of type theory inside type theory.

1 Introduction

The �rst universe �a la Tarski [11] consists of the simultaneous inductive de�nition of the set U

0

of codes for small sets and the recursive de�nitions of the decoding function T

0

. We have the

following rules of formation (using Martin-L�of's term)

U

0

: set ;

T

0

: (U

0

)set :

We also have introduction and equality rules for constructors re
ecting �- and Eq-formation:

�

0

: (u : U

0

)(u

0

: (x : T

0

(u))U

0

)U

0

;

T

0

(�

0

(u; u

0

)) = �(T

0

(u); (x)T

0

(u

0

(x)));

eq

0

: (u : U

0

)(b; b

0

: T

0

(u))U

0

;

�

peterd@cs.chalmers.se

106

T

0

(eq

0

(u; b; b

0

)) = Eq(T

0

(u); b; b

0

):

This de�nition does not �t the schema for inductive and recursive de�nition in Dybjer [5],

since T

0

appears in the introduction rules for U

0

. Note that it even appears negatively in the

rule for �

0

.

In spite of this simultaneity we can argue that it is a predicative de�nition. For example,

the rules for �

0

stipulate the following way of constructing new elements of U

0

.

At a certain stage we may have constructed the element u. Since T

0

is de�ned by U

0

-

recursion, we immediately construct the set T

0

(u). Hence it is possible to construct a function

u

0

with domain T

0

(u) and range (the presently constructed elements of) U

0

. Hence it makes

sense to construct an element �

0

(u; u

0

). Moreover, we can de�ne the T

0

(�

0

(u; u

0

)) in terms of

the already constructed sets T

0

(u) and T

0

(u

0

(x)) for x : T

0

(u).

For similar reasons we shall accept a certain general notion of simultaneous inductive-

recursive de�nition. The formulation of this notion will appear as a minor modi�cation of

the schema for inductive and recursive de�nitions in type theory which was presented in Dybjer

[5]. The main change is that we allow the simultaneous inductive de�nition of a family of sets

P and the P -recursive de�nition of a function f .

The idea to consider such a general notion was inspired by Nax Mendler's paper [12] on the

category-theoretic semantics of universes in type theory.

Note that this generalization is only possible if we adopt a schematic approach to recursive

de�nitions, since elimination rules only apply to recursive de�nitions on a previously de�ned

set. For example, T

0

is de�ned by a recursive schema and not in terms of U

0

-elimination.

Moreover, it is also essential that we do not require functions de�ned by recursion to take

their values in a particular set (as in the traditional elimination rules) but allow them to take

their values in an arbitrary type. For example, the values may be in the type of sets itself, so

we have recursively de�ned families of sets.

So the conceptual priority of certain concepts have been reversed as compared to the stan-

dard formulations of Martin-L�of [10, 11]:

elimination rules ! recursion schemata

type-valued recursion ! universes

Martin-L�of [9] has previously considered a formulation of type theory in terms of recursion

schemata. Other arguments for viewing recursive de�nitions schematically (and allowing more

general forms of pattern matching) can be found in Thierry Coquand's paper in this volume

[2].

The idea to obtain type-valued recursion in Martin-L�of's type theory by formulating typed-

valued (\large") elimination rules rather than by using the ordinary elimination rules in con-

junction with universes is due to Bengt Nordstr�om. Smith [9] gave an interpretation of a theory

with such large elimination rules in a theory with ordinary elimination rules and universes.

2 Schema for simultaneous inductive-recursive de�nitions

The reader is referred to Dybjer [5] for a presentation of the old schema, which uses Martin-

L�of's theory of logical types. (Alternative presentations can be found in Dybjer [3] of a schema

for Martin-L�of's type theory which does not use the theory of logical types, and Coquand and

Paulin [2] of a schema for the Calculus of Constructions.) I have tried to use similar notation

in order to highlight the similarity between the new and old schemas. In particular there is the

107

notation a :: �, meaning that a is a sequence of objects �tting the sequence (relative context,

telescope) � of dependent types. The notion of an s-type (set-like type) is also essential: it is a

type which is built up by the function type construction from base types which are sets. The

reason for requiring that certain types occurring in the schema are s-types rather than sets is

to cover Martin-L�of's [11, preface] rules for �.

I present the case with one inductive and one recursive de�nition simultaneously. There are

obvious generalizations to the case with several such simultaneous de�nitions. Furthermore, I

assume that there are no parameters, but the discussion of these in Dybjer [5] can be extended

in a straightforward way.

A de�nition is always relative to a theory containing the rules for previously de�ned concepts.

Thus the requirements on the di�erent parts of the de�nitions (�; ; �; �; p; q below) are always

judgements with respect to that theory.

2.1 Formation rules

Consider introducing a family of sets P together with a function f de�ned by P -recursion:

P : (a :: �)set ;

f : (a :: �)(c : P (a)) [a]:

Here we require that � is a sequence of s-types and [a] type (a :: �).

2.2 Introduction rules

A premise of an introduction rule is either non-recursive or recursive.

� A non-recursive premise has the form

b : �;

where � s-type depending on the previous premises (see below).

� A recursive premise has the form

u : (x :: �)P (p[x]);

where � is a sequence of s-types, and p[x] :: � (x :: �) depending on the previous premises

(see below). If � is empty the premise is ordinary and otherwise generalized (as in ordinary

and generalized induction).

The type of the conclusion of the introduction rule has the form

P (q);

where q :: � depending on the previous premises (see below).

We write � = �[: : : ; b

0

; : : : ; u

0

; : : :], etc. to indicate explicitly the dependence on previous

non-recursive premise b

0

: �

0

and recursive premises u

0

: (x

0

:: �

0

)P (p

0

[x

0

]): (This notation is not

intended to indicate that non-recursive premises always come before recursive premises.)

We require that

�[: : : ; b

0

; : : : ; u

0

; : : :] =

^

�[: : : ; b

0

; : : : ; (x

0

)f(p

0

[x

0

]; u

0

(x

0

)); : : :];

where

^

�[: : : ; b

0

; : : : ; v

0

; : : :] s-type (: : : ; b

0

: �

0

; : : : ; v

0

: (x

0

:: �

0

) [p

0

[x

0

]]; : : :). Note that the context

of

^

� is obtained from the context (list of previous premises) of � by replacing each recursive

premise of the form u

0

: (x

0

:: �

0

)P (p

0

[x

0

]) by v

0

: (x

0

:: �

0

) [p

0

[x

0

]].

The dependence of �; p, and q on previous premises are obtained in the same way as for �.

108

2.3 Equality rules for the simultaneously de�ned function

Let intro be a constructor constant and b : � indicate a typical non-recursive premise and

u : (x :: �)P (p[x]) indicate a typical non-recursive premise of the corresponding introduction

rule. The form of the equality rule for f and intro is:

f(q; intro(: : : ; b; : : : ; u; : : :)) = e(: : : ; b; : : : ; (x)f(p[x]; u(x)); : : :);

where e(: : : ; b; : : : ; v; : : :) : [q] (: : : ; b : �; : : : ; v : (x :: �) [p[x]]; : : :).

2.4 The analogue of universe elimination

Universe elimination expresses de�nition by U

0

-recursion after U

0

and T

0

are de�ned.

We express this schematically for the general case. Let P and f be de�ned by a simultaneous

inductive-recursive de�nition as above. We may then de�ne a new function

f

0

: (a :: �)(c : P (a))

0

[a; c];

by P -recursion after P and f have been de�ned. Here we require that

0

[a; c] (a :: �; c : P (a)).

The equality rule has the form

f

0

(q; intro(: : : ; b; : : : ; u; : : :)) = e

0

(: : : ; b; : : : ; u; (x)f

0

(p[x]; u(x)); : : :)

where

e

0

(: : : ; b; : : : ; u; v; : : :) :

0

[q; intro(: : : ; b; : : : ; u; : : :)]

(: : : ; b : �; : : : ; u : (x :: �)P (p[x]); v : (x :: �)

0

[p[x]; u(x)]; : : :):

Note that, in contrast to and e in the schema for f ,

0

depends on c as well as on a and

e

0

on u as well as on v in the schema for f

0

.

3 A simple example: lists with distinct elements

The following example illustrates how the schema can be used. It is a simpli�cation of an

example of a simultaneous inductive-recursive de�nition used by Catarina Coquand in her work

(in progress) on formalizing the typed �-calculus in type theory. She de�ned the notion of a

correct context and the notion of a fresh variable in this way.

Let

A : set ;

: (A)(A)set

be parameters to this de�nition. A is the set from which the elements of the list are taken and

is an arbitrary relation, which we interpret as \distinctness".

We then simultaneously de�ne the set Dlist of lists with distinct elements and the relation

Fresh , which expresses that a new element is distinct from all elements in a list.

3.1 Formation rules

Dlist : set ;

Fresh : (c : Dlist)(a : A)set :

We see that this is an instance of the schema with � empty and = (a : A)set .

109

3.2 Introduction and equality rules

nil : Dlist ;

Fresh(nil) = (a)>;

cons : (b : A)(u : Dlist)(b

0

: Fresh(u; b))Dlist ;

Fresh(cons(b; u)) = (a)(b#a ^ Fresh(u; a)):

Let us describe in detail how to obtain the rule for cons from the schema.

The �rst premise b : A is non-recursive with � = A which is a set and hence an s-type.

The second premise is recursive but ordinary, so there is nothing to check. The third premise

is non-recursive with

�[b; u] = Fresh(u; b) =

^

�[b; F resh(u)];

where

^

�[b; v] = v(b); which is a set and hence an s-type in the context (b : A; v : (a : A)set). Note

that here we have a dependency of a non-recursive premise on the previous (both non-recursive

and recursive) premises.

The conclusion has the right form: since � is empty there is nothing more to check.

3.3 A function de�ned by the analogue of universe elimination

We can de�ne a function which computes the length of a Dlist by using an instance of the

general schema corresponding to universe elimination:

length : (c : Dlist)N:

Here

0

= N .

The equality rules are

length(nil) = 0;

length(cons(b; u; b

0

)) = s(length(u));

which easily can be seen to be instances of the general schema.

4 Universes �a la Tarski - faithful re
ection

4.1 The �rst universe

We return to the �rst universe and show how it is obtained by instantiating the schema. The

formation rules are

U

0

: set ;

T

0

: (U

0

)set :

Here � is empty and = set .

The introduction rule re
ecting �-formation is

�

0

: (u : U

0

)(u

0

: (x : T

0

(u))U

0

)U

0

:

110

It has a �rst ordinary recursive premise, and a second generalized recursive premise with � =

T

0

(u). Thus we have an example where a recursive premise depends on an earlier recursive

premise.

The corresponding equality rule is

T

0

(�

0

(u; u

0

)) = �(T

0

(u); (x)T

0

(u

0

(x))):

The introduction rule re
ecting Eq-formation is

eq

0

: (u : U

0

)(b; b

0

: T

0

(u))U

0

:

It has a �rst ordinary recursive premise, and a second and third non-recursive premise with

� = T

0

(u). Thus we have another example when a non-recursive premise depends on an earlier

recursive premise.

The corresponding equality rule is

T

0

(eq

0

(u; b; b

0

)) = Eq(T

0

(u); b; b

0

):

4.2 The second universe

The formation rules are

U

1

: set ;

T

1

: (U

1

)set :

Here � is empty and = set .

There are analogous rules for the constructors �

1

and eq

1

to those of the �rst universe for

re
ecting � and Eq-formation respectively. There is also a rule re
ecting U

0

-formation.

u

01

: U

1

:

It has no premise.

The corresponding equality rule is

T

1

(u

01

) = U

0

Since T

0

is de�ned by U

0

-recursion, it is natural to re
ect it as a function

t

01

: (U

0

)U

1

;

which is de�ned by U

0

-recursion:

t

01

(�

0

(u; u

0

)) = �

1

(t

01

(u); (x)t

01

(u

0

(x)));

t

01

(eq

0

(u; b; b

0

)) = eq

1

(t

01

(u); b; b

0

):

This de�nition comes after the de�nition of U

0

and T

0

, so it is an instance of the schema

corresponding to universe-elimination.

This is the \�rst version" of the universe hierarchy in the paper on \Trans�nite hierarchies

of universes" in Palmgren [13], since t

01

is not a constructor. Palmgren motivates the recursion

equations for t

01

by the principle that T

1

(a) = T

1

(b) should imply that a = b, which is also the

reason for calling it \faithful re
ection".

111

4.3 Higher universes

We can continue in an analogous way and de�ne U

2

and T

2

, U

3

and T

3

, etc. Thus for each set A

de�nable in a theory T , there is an extension of T which contains a universe U

n

, which contains

a code for A. So we get an external universe hierarchy.

5 Unfaithful re
ection and its internalization

5.1 The second universe

The \second version" of the second universe in Palmgren [13] treats the code

t

01

: (U

0

)U

1

for T

0

as a constructor instead of a recursively de�ned function. Hence we need an extra equality

rule for T

1

:

T

1

(t

01

(b)) = T

0

(b)

This makes the re
ection unfaithful, since in this case di�erent codes may denote the same set.

5.2 The next universe construction

Gri�or and Palmgren showed that the \second version" of the construction of U

n+1

from U

n

can be internalized. We introduce the new set formers Nextu and Nextt , such that U

s(n)

=

Nextu(U

n

; T

n

) and T

s(n)

= Nextt(U

n

; T

n

). This construction also falls under the schema in

section 2.

Let

U : set ;

T : (U)set

be parameters of the de�nition: we need to construct a universe on top of an arbitrary family

U; T .

Formation and typing

Nextu : set ;

Nextt : (Nextu)set :

Introduction and equality rules correspond to those of the �rst universe, but we also need

to re
ect the code set U as

� : Nextu;

Nextt(�) = U

and the decoding function T as

t : (b : U)Nextu;

Nextt(t(b)) = T (b):

112

5.3 The super universe

The super universe in Palmgren [13] (this idea was also originally presented in unpublished

work together with Ed Gri�or) is obtained by re
ecting the next-universe construction, viewed

as the set formers

Nextu : (U : set)(T : (U)set)set ;

Nextt : (U : set)(T : (U)set)(Nextu(U; T))set

as well. This super universe also falls under the schema in section 2.

Formation and typing rules

U

1

: set;

T

1

: (U

1

)set:

Introduction and equality rules correspond to those for the �rst universe, but we also need

to re
ect the �rst universe U

0

u

0

: U

1

;

T

1

(u

0

) = U

0

and the next-universe construction Nextu

nextu : (u : U

1

)(u

0

: (x : T

1

(u))U

1

)U

1

;

T

1

(nextu(u; u

0

)) = Nextu(T

1

(u); (x)T

1

(u

0

(x)))

as constructors for U

1

.

As before there is a choice as to re
ect T

0

and Nextt either faithfully as recursively de�ned

functions or unfaithfully as constructors. The details are similar to the situation for U

1

presented

above.

6 Other applications

Other notions which seem to be obtainable by a simultaneous inductive-recursive de�nition are

the following.

� The propositions and truths in a Frege structure [1]. In Dybjer [7] this method is used for

constructing a Frege structure inside Martin-L�of's type theory.

� The computability predicates for types and terms in a theory with dependent types [8].

� The generalization of logical relations to the case of dependent types [3].

The details of the two latter constructions are not yet developed.

113

References

[1] P. Aczel. Frege Structures and the Notions of Proposition, Truth, and Set, pages 31{59 in

The Kleene Volume. North-Holland, 1980.

[2] T. Coquand. Pattern matching with dependent types. This volume.

[3] T. Coquand. An Algorithm for Testing Conversion in Type Theory, pages 255{279 in

Logical Frameworks. Cambridge University Press, 1991.

[4] T. Coquand and C. Paulin. Inductively de�ned types, preliminary version. In LNCS 417,

COLOG '88, International Conference on Computer Logic. Springer-Verlag, 1990.

[5] P. Dybjer. An inversion principle for Martin-L�of's type theory. In Proceedings of the

Workshop on Programming Logic. Programming Methodology Group Report 54, Chalmers

University of Technology and University of G�oteborg", May 1989.

[6] P. Dybjer. Inductive sets and families in Martin-L�of's Type Theory and their set-theoretic

semantics, pages 280{306 in Logical Frameworks. Cambridge University Press, 1991.

[7] P. Dybjer. Constructing a Frege structure in predicative type theory. Draft paper, 1992.

[8] P. Martin-L�of. An intuitionistic theory of types. Unpublished report, 1972.

[9] P. Martin-L�of. An intuitionistic theory of types: Predicative part. In Logic Colloquium

`73, pages 73{118. North-Holland, 1975.

[10] P. Martin-L�of. Constructive mathematics and computer programming. In Logic, Method-

ology and Philosophy of Science, VI, 1979, pages 153{175. North-Holland, 1982.

[11] P. Martin-L�of. Intuitionistic Type Theory. Bibliopolis, 1984.

[12] P. F. Mendler. Predicative type universes and primitive recursion. In Proceedings Sixth

Annual Synposium on Logic in Computer Science. IEEE Computer Society Press, 1991.

[13] E. Palmgren. On Fixed Point Operators, Inductive De�nitions and Universes in Martin-

L�of's Type Theory. PhD thesis, Uppsala University, 1991.

[14] J. Smith. Propositional functions and families of types. Notre Dame Journal of Formal

Logic, 30(3):442{458, 1989.

114

Formalizing Properties of Well-Quasi Ordered Sets in ALF

DRAFT

Daniel Fridlender

�

University of G�oteborg and Chalmers University of Technology

June 1992

Abstract

To prove termination of an algorithm taken from polynomial ideal theory, some general

properties of ordered sets must be proved. With the aim of deriving this algorithm in ALF,

constructive proofs of these properties and their formalization in ALF are presented.

Introduction

This paper presents some preliminary work on the line of completely formalizing in ALF a

constructive proof of a proposition taken from polynomial ideal theory. In the classical proof of

this proposition, a classical argument is used to prove the unexistence of in�nite sequences of

tuples of natural numbers

(t

1

1

; : : : ; t

1

n

); : : : ; (t

m

1

; : : : ; t

m

n

); : : :

such that

8i; j 2 N :i < j =) 9k 2 1 : : : n:t

i

k

6� t

j

k

: (1)

Next section explains the proposition taken from polynomial ideal theory and the role this clas-

sical argument plays in the classical proof. The following section formulates ways of expressing

the unexistence of such in�nite sequences in a constructive setting. After that, the formalization

of two constructive arguments is described. To conclude, we discuss some problems that arose

with the formalization and show how they may be solved with the pattern-matching facility of

ALF described in [4].

Motivation

The proposition taken from polynomial ideal theory states the existence of Gr�obner bases for

�nitely generated polynomial ideals over discrete �elds. More precisely, the proposition says

that

given a �eld K with decidable equality, a natural number n, an admissible order

� over N

n

and a �nitely generated polynomial ideal I, there exist polynomials

g

1

; : : : ; g

s

such that fg

1

; : : : ; g

s

g is a Gr�obner basis of I with respect to �.

�

frito@cs.chalmers.se

115

The �eld K is the set from which the coe�cients of the polynomials are taken. The number n is

the number of indeterminates for the polynomials and so, N

n

is the set of exponents. Given an

exponent e 2 N

n

and i 2 1 : : : n, e

i

is the i-th coordinate of e. We de�ne d(e) = e

1

+: : :+e

n

. The

notions of admissible order and Gr�obner basis involved in the proposition are introduced below.

After that, we brie
y explain how the need of proving the unexistence of in�nite sequences

satisfying (1) arises.

The reader is referred to [1] and [6] for detailed descriptions of the proposition, and to [2]

and [1] for its applications.

Admissible orders

When dealing with polynomials with only one indeterminate, the way to write them is very nat-

ural: we use the usual order < over natural numbers and we write the monomials in decreasing

order of their exponents. It might be irrelevant when we just want to write them, but it turns

out to be important when we want to write a procedure to divide a polynomial by another

because it grants the procedure to terminate.

There is not such a natural way (or may be there are many) when we speak of polynomials

with many indeterminates. For instance the lexicographical order between tuples

e �

l

f () 9j 2 1 : : : n:(e

j

< f

j

^ 8i 2 1 : : : (j � 1):e

i

= f

i

)

or the degree lexicographical order

e �

d

f () d(e) < d(f) _ (d(e) = d(f) ^ e �

l

f)

or the reverse order

e �

r

f () d(e) < d(f) _

_ (d(e) = d(f) ^ 9j 2 1 : : : n:(e

j

> f

j

^ 8i 2 (j + 1) : : : n:e

i

= f

i

))

are \suitable" ways of determining this \way of writing" polynomials. By suitable we mean

that procedures like the division will terminate.

We precise the notion of being \suitable" by de�ning admissible orders. A total order �

over N

n

is admissible i�

� 8e 2 N

n

:(0; : : : ; 0) � e

� 8e; f; g 2 N

n

:e � f =) e +

n

g � f +

n

g

where +

n

is the componentwise addition.

Gr�obner bases

Consider the case of polynomials with only one indeterminate. To compute the remainder of

the division of f by g = a

n

X

n

+ a

n�1

X

n�1

+ : : :+ a

0

(where a

n

is a nonzero element in the �eld

K) we can consider g as a rewriting rule

a

n

X

n

�! �a

n�1

X

n�1

� : : : � a

0

which transforms polynomials of the form

f

1

= p+ b

m+n

X

m+n

+ : : :+ b

m

X

m

+ q

116

into

f

2

= p+ (b

m+n�1

�

b

m+n

a

n

a

n�1

)X

m+n�1

+ : : :+ (b

m

�

b

m+n

a

n

a

0

)X

m

+ q;

where

p = b

m+n+o

X

m+n+o

+ : : :+ b

m+n+1

X

m+n+1

q = b

m�1

X

m�1

+ : : :+ b

0

:

The usual algorithm to compute the remainder r of the division of f by g consists of a sequence

of such transformations. It can be seen that any sequence f

1

; : : : ; f

t

such that

� f = f

1

,

� 8i 2 2 : : : t, f

i�1

is transformed to f

i

, and

� f

t

can not be further transformed,

produces the remainder of the division of f by g, which is f

t

.

Once we have an admissible order this can be generalized to the case of n indeterminates.

Given a nonzero polynomial g we de�ne e

�

(g) to be the greatest exponent of g with respect

to �, c

�

(g) the coe�cient with which it appears in g and m

�

(g) the monomial c

�

(g)X

e

�

(g)

.

Notice that we use the notation cX

e

for cX

e

1

1

: : : X

e

n

n

. We can look at g as a rewriting rule

m

�

(g) �! m

�

(g) � g:

If a polynomial f

1

has no monomial m with exponent e such that e

�

(g) �

n

e we say that f

1

is in normal form with respect to g and �. In the case that f

1

has a monomial cX

e

such that

e

�

(g) �

n

e we say that f

1

reduces to f

2

by g and � using the monomial of exponent e and we

write it f

1

e;g;�

�! f

2

, where

f

2

= f

1

�

cX

e

m

�

(g)

g

= f

1

�

c

c

�

(g)

X

e�

n

e

�

(g)

g:

where �

n

is the componentwise subtraction.

Now, we can think of having a set of polynomials or rules G = fg

1

; : : : ; g

s

g. By f

1

G;�

�! f

2

we mean that there is some e 2 N

n

and some g 2 G such that f

1

e;g;�

�! f

2

, and we say that f

1

reduces to f

2

by G and �. The polynomial f is in normal form with respect to G and � if for

all g 2 G it is in normal form with respect to g and �.

Again we can think of several steps of

G;�

�! as a division of a polynomial f by a set of

polynomials G. The fact of being � an admissible order grants the procedure to terminate. But

the di�erence is that now there is not such a unique remainder because in each step we have

many possible rules to apply and in general,

G;�

�! is not con
uent. A set G of polynomials is

called a Gr�obner basis with respect to � i�

G;�

�! is con
uent.

There are many other characterizations of Gr�obner bases (see [1] and [6]).

Notice that the notion of being a Gr�obner basis depends on the admissible order � and so, a

set may not be a Gr�obner basis with respect to an admissible order in spite of being a Gr�obner

basis with respect to another admissible order.

We say that G is a Gr�obner basis of an ideal I with respect to � i� it is a Gr�obner basis

with respect to � and the ideal generated by G is I.

117

Classical Proof

The classical proof of the proposition (see [3], [6] and [1]) and consists of:

� A procedure that computes a sequence g

1

; : : : ; g

s

; : : : of polynomials.

� A proof of absurdity from the assumption that the sequence of polynomials computed by

the procedure is in�nite, that is, a classical proof of termination.

To look at the classical proof with more detail, we de�ne the relation <

n

over N

n

by

e �

n

f () 8i 2 1 : : : n:e

i

� f

i

With this the classical proof consists of:

� A procedure that computes a sequence g

1

; : : : ; g

s

; : : : of nonzero polynomials with greatest

exponents e

1

; : : : ; e

s

; : : : (i.e., e

i

= e

�

(g

i

)) such that

8i; j 2 N :i < j =) e

i

6�

n

e

j

: (2)

� A proof of absurdity from the assumption that an in�nite sequence of exponents satisfy-

ing (2) exists.

The second point, which is the classical proof of termination, states exactly the unexistence

of an in�nite sequence satisfying (1), because of the equivalence between (1) and (2). A sequence

e

1

; : : : ; e

s

; : : : (�nite or in�nite) satisfying (2) is called a bad sequence.

Thus, in what follows, we will formalize constructive proofs of the unexistence of in�nite

bad sequences.

Constructive Formulations

Two approaches have been taken to express termination in a constructive way.

The �rst one was inspired in the fact that the in�nite sequence e

1

; : : : ; e

s

; : : : is bad i� the

�nite sequences []; [e

1

]; : : : ; [e

1

; : : : ; e

s

]; : : : are all bad sequences. Thus, instead of speaking of

the unexistence of in�nite bad sequences, we can speak of the well-foundedness of the relation

@ on �nite bad sequences de�ned by

[e

1

; : : : ; e

s

1

] @ [f

1

; : : : ; f

s

2

]() s

1

= s

2

+ 1 ^ 8i 2 1 : : : s

2

:e

i

= f

i

:

The second approach is dual to this one and is essentially the one chosen in [7]. A sequence

e

1

; : : : ; e

s

; : : : is good i� there exist i; j 2 N such that i < j and e

i

�

n

e

j

. The decidability of

�

n

implies that the sets B and G of all the �nite bad and good sequences respectively, form a

partition of the set of �nite sequences. Thus, instead of speaking of the unexistence of in�nite

bad sequences, we can speak of the existence of a good initial segment of any in�nite sequence.

We follow [9] expressing this universal quanti�cation over in�nite sequences by means of bar

induction.

Thus, given a set A and a relation < on it, we will have two di�erent de�nitions of the

predicate well

1

. According to the �rst one, < is well i� the relation @ de�ned by

[a

1

; : : : ; a

n

] @ [b

1

; : : : ; b

m

]() n = m+ 1 ^ 8i 2 1 : : : m:a

i

= b

i

1

The properties we are interested in, hold for any well relation. This is why we de�ne the notion of well

instead of the more known notion of well quasi-order suggested by the title of this paper

118

is well-founded on the set of �nite bad sequences (of elements of A). According to the second

one, < is well i� the predicate to be good, on �nite sequences of elements of A, is a bar.

In both approaches the strategy taken was to prove as a lemma that if <

A

and <

B

are well

on A and B respectively, so is <

A�B

on A� B, where

(a; b) �

A�B

(c; d)() a �

A

c ^ b �

B

d:

This, together with a proof that < (the usual order on natural numbers) is well will give a proof

that <

2

is well on N

2

, and by induction, that <

n

is well on N

n

for any natural number n.

Thus, in spite of being interested only in the relation <

n

, we proved the lemmas in a more

general level involving any relation on any set.

Formalizations

The formalizetions were done in ALF (see [8]). The new features for making de�nitions in

contexts were used extensively. We brie
y show the syntax for dealing with contexts and

substitutions.

To give a name to a context:

name = context

To make de�nitions in a context we show as an example the de�nition of tsil (lists in reverse

order) where the context is [A:Set]:

tsil : Set [A : Set]

[] : tsil [A : Set]

: : (tsil; A)tsil [A : Set]

tsilrec : (P : (tsil)Set;

P([]);

(l : tsil; a : A; P(l))P(l:a);

l : tsil)P(l) [A : Set]

tsilrec(P; d; e; []) = d

tsilrec(P; d; e; l:a) = e(l; a; tsilrec(P; d; e; l))

Substitutions can also be given a name:

name = fx

1

:= t

1

; : : : ; x

n

:= t

n

g C

1

C

2

where the context C

1

contains a typing for x

1

; : : : ; x

n

and the free variables in t

1

; : : : ; t

n

are

typed in the context C

2

. The syntax of the application of a substitution � to a term t is tf�g.

In the de�nitions that follow we use contexts to represent the structure we work with: a

relation on a set.

First Approach

With the de�nition of tsil above, we say that an order < on a set A is well i� the relation @

de�ned by

l @ k () 9a 2 A:l = k:a

119

is well-founded on the subset of the bad tsils. Thus, the de�nition of well-foundedness must be

de�ned not just for a relation, but for a relation on a subset.

In the proof that <

A�B

is well on A � B provided that <

A

and <

B

are well on A and B

respectively, we followed [10] where this result is proved for well quasi-orders (well relations that

are quasi-orders). The main lemma in [10] is that < is well on A i� for all a 2 A its restriction

is well on A[a], which is de�ned there as a subset of A.

These arguments led us to de�ne relations with a context having the relation itself, the set

on which it is de�ned and the subset on which the behavior of the relation is interesting:

REL = [A : Set; As : (A)Set;<: (A; A)Set] :

We de�ne for a relation to be well-founded, as it is frequently done in constructive mathe-

matics. We de�ne the accessible part of a set by a relation, slightly modi�ed here to consider

the case of a relation on a subset:

acc : (A)Set REL

acc

I

: (a : A; As(a); (b : A; As(b); b < a)acc(b))acc(a) REL

acc

E

: (P : (a : A; acc(a))Set;

(a : A;

as : As(a);

q : (b : A; As(b); b < a)acc(b);

(b : A; bs : As(b); r : b < a)P(b; q(b; bs; r)))P(a; acc

I

(a; as; q));

a : A;

p : acc(a))P(a; p) REL

acc

E

(P; d; a; acc

I

(a; as; q)) = d(a; as; q; [b; bs; r]acc

E

(P; d; b; q(b; bs; r)))

Finally, a relation is well-founded if all the elements of the subset are in the accessible part:

wf = 8a 2 A:As(a) � acc(a) : Set REL

We informally said that a relation is well i� the relation @ de�ned above, is well-founded

on the subset of bad tsils:

well = wffA := tsil; As := bad;<:=@g : Set REL

The set tsil was already de�ned. To de�ne the subset (or predicate) bad a more elementary

notion seems to be necessary: the one of being a bad element for a tsil. Given a relation < on

A, a tsil [a

1

; : : : ; a

s

] and a 2 A, a is a bad element for [a

1

; : : : ; a

s

] i�

8i 2 1 : : : s:a

i

6� a

where � is the re
exive closure of < and not = [A]A � ? : (Set)Set.

Two possible de�nitions of bad element have been analized: by an inductive de�nition, or

by an implicit de�nition. We have chosen the latter, because the former, though being more

elegant and clear, seems not to be strong enough to prove some properties. Some comments on

this are presented in the last part of this paper.

badelem : (tsil; A)Set REL

120

badelem([]; a) = As(a)

badelem(l:b; a) = badelem(l; a) ^ b 6� a

The same arguments led us to use implicit de�nitions to de�ne bad and @:

bad : (tsil)Set REL

bad([]) = >

bad(l:a) = bad(l) ^ badelem(l; a)

@ : (tsil; tsil)Set REL

[] @ l = ?

l:b @ l

0

= l =

tsil

l

0

In [10] given a relation < on A and a �nite sequence [a

1

; : : : ; a

n

] the subset of A, A[a

1

; : : : ; a

s

]

is de�ned by

A[a

1

; : : : ; a

s

] = fa 2 Aj8i 2 1 : : : s:a

i

6� ag:

The main lemma there is that < is well on A i� for all a 2 A, it is well on A[a]. This is stated

in ALF with two lemmas:

lemma

1

= ? : (well; l : tsil)wellfAs := badelem(l)g REL

lemma

2

= ? : ((a : A)wellfAs := badelem([]:a)g)well REL

being lemma 1 a more general statement than the \only if" part of the main lemma.

What follows presents a formalization of the statements proved in [10]. Lemma 3 states

that if a relation is well on a subset, it is also well on a subset of it; lemma 4, that if a relation

is well on two subsets, it is well on their union.

lemma

3

= ? : (Bs : (A)Set; (a : A; Bs(a))As(a); well)wellfAs := Bsg REL

lemma

4

= ? : (Bs : (A)Set;

well;

wellfAs := Bsg)wellfAs := [a]As(a) _ Bs(a)g REL

The theorem, saying that if < is a decidable relation well on A and � is well on B, <

A�B

is well on A� B.

theorem = ? : ((a; b : A)a < b _ a 6< b; well; well

B

)wellf�g REL + REL

B

where the substitution � is

� = fA := A ^ B;

As := [p]As(fst(p)) ^ Bs(snd(p));

<:= [p; q] <

A�B

(fst(p); snd(p); fst(q); snd(q))g : REL REL + REL

B

:

and

REL

B

= [B : Set; Bs : (B)Set;�: (B; B)Set]

well

B

= wellfA := B; As := Bs;<:=�g : Set REL

B

<

A�B

= [a; b; c; d](a < c ^ b =

B

d)

_ (a =

A

c ^ b � d)

_ (a < c ^ b � d) : (A; B; A; B)Set REL + REL

B

The formal proof follows the arguments in [10]. The formalization is not di�cult but has

many details that make it laborious.

121

Second Approach

Contrary to what happened in the �rst approach, now there is no need to consider subsets. The

notion of well is now de�ned as a property that the whole set of tsils has to satisfy, which is,

that the predicate good is a bar. Thus, the structure we need is represented by the context:

REL = [A : Set;<: (A; A)Set] :

We de�ne the dual notion to bad, to be good, which uses a previous notion of being a good

element. Given a relation < on A, a tsil [a

1

; : : : ; a

s

] and a 2 A, a is a good element for [a

1

; : : : ; a

s

]

i�

9i 2 1 : : : s:a

i

� a

This time we chose an inductive de�nition because at the time this proof was done, the new

facilities with pattern-matching were already under development and they solved the weakness

of this de�nition:

goodelem : (tsil; A)Set REL

goodelem

I1

: (l : tsil; a; b : A; a � b)goodelem(l:a; b) REL

goodelem

I2

: (l : tsil; a; b : A; goodelem(l; b))goodelem(l:a; b) REL

goodelem

E

: (b : A;

P : (l : tsil; goodelem(l; b))Set;

(l : tsil; a : A; r : a � b)P(l:a; goodelem

I1

(l; a; b; r));

(l : tsil;

a : A;

g : goodelem(l; b);

P(l; g))P(l:a; goodelem

I2

(l; a; b; g));

l : tsil;

g : goodelem(l; b))P(l; g) REL

goodelem

E

(b; P; d; e; l:a; goodelem

I1

(l; a; b; r)) = d(l; a; r)

goodelem

E

(b; P; d; e; l:a; goodelem

I2

(l; a; b; g)) = e(l; a; g; goodelem

E

(b; P; d; e; l; g))

The same argument led us to use inductive de�nitions for the predicate good.

good : (tsil)Set REL

good

I1

: (l : tsil; a : A; goodelem(l; a))good(l:a) REL

good

I2

: (l : tsil; a : A; good(l))good(l:a) REL

good

E

: (P : (l : tsil; good(l))Set;

(l : tsil; a : A; g : goodelem(l; a))P(l:a; good

I1

(l; a; g));

(l : tsil; a : A; g : good(l); P(l; g))P(l:a; good

I2

(l; a; g));

l : tsil;

g : good(l))P(l; g) REL

good

E

(P; d; e; l:a; good

I1

(l; a; g)) = d(l; a; g)

good

E

(P; d; e; l:a; good

I2

(l; a; g)) = e(l; a; g; good

E

(P; d; e; l; g))

With this approach we express the unexistence of in�nite bad sequences by saying that every

in�nite sequence has an initial segment which is good. Following [9] we express this universal

quenti�cation over in�nite sequences through the notion of being a bar. We say that a predicate

122

P on tsils bars a tsil l, either when P(l) holds or when for all a in A it bars l.a. For an analysis

of bar induction as a constructive principle, we refer to [5].

This is formalized in ALF by the inductive de�nition:

bar : ((tsil)Set; tsil)Set [A : Set]

bar

I1

: (P : (tsil)Set; l : tsil; P(l))bar(P; l) [A : Set]

bar

I2

: (P : (tsil)Set; l : tsil; (a : A)bar(P; l:a))bar(P; l) [A : Set]

bar

E

: (P : (tsil)Set;

Q : (l : tsil; bar(P; l))Set;

(l : tsil; p : P(l))Q(l; bar

I1

(P; l; p))

(l : tsil;

q : (a : A)bar(P; l:a);

(a : A)Q(l:a; q(a)))Q(l; bar

I2

(P; l; q));

l : tsil;

p : bar(P; l))Q(l; p) [A : Set]

bar

E

(P; Q; d; e; l; bar

I1

(P; l; p)) = d(l; p)

bar

E

(P; Q; d; e; l; bar

I2

(P; l; p)) = e(l; p; [a]bar

E

(P; Q; d; e; l:a; p(a))))

With this, we say that a relation is well when good bars the empty tsil:

well = bar(good; []) REL

The proof that if two relation < and � are well on A and B respectively, so is their product on

A� B proceeds by de�ning a 3-ary predicate P whose arguments are tsils of elements of A, B

and A�B respectively. Informally, we de�ne P by

P(([a

1

; : : : ; a

n

]; [b

1

; : : : ; b

m

]; [(c

1

; d

1

); : : : ; (c

l

; d

l

)])

()

good([a

1

; : : : ; a

n

]) _ 9i 2 1 : : : n:9j 2 1 : : : l:a

i

� c

j

_

_ goodf�

B

g([b

1

; : : : ; b

m

]) _ 9i 2 1 : : : m:9j 2 1 : : : l:b

i

� d

j

_

_ goodf�g([(c

1

; d

1

); : : : ; (c

l

; d

l

)])

where the de�nition of � and �

B

are the intuitive ones.

With this, what is proved is that if < and � are well on A and B respectively, P([]; []) is a

bar (on the sequences of pairs). What remains to prove is that good([]) does not hold.

Some Comments on the Formalizations

In both approaches some inductive de�nitions seemed to be too weak for our purposes. In the

�rst one, an inductive de�nition of bad element would not allow us to prove a 6� b from the

fact of being b a bad element for a sequence whose last element is a, which is intuitive from

the informal de�nition of being a bad element. The di�culty comes from the impossibility of

de�ning the function last on tsils (or head on lists). An analogous problem arises in the second

approach, in which an inductive de�nition of good is not strong enough to prove that the empty

tsil is not good.

In both problems, the di�culty comes from having to consider in the proofs, while using

the elimination rule of the inductive de�nition, impossible cases. The pattern-matching feature

presented in [4] eliminates from the case analysis these impossible cases.

123

References

[1] Bruno Buchberger. Gr�obner Bases: An Algorithmic Method in Polynomial Ideal Theory. In

N.K.Bose, editor, Multidimensional Systems Theory, pages 184-232. D.Reidel Publishing

Company. Dordrecht-Boston-Lancaster, 1985.

[2] Bruno Buchberger. Applications of Gr�obner Bases in Non-linear Computational Geometry.

In Proc. Workshop on Scienti�c Software, IMA, Minneapolis, USA. Springer, 1987.

[3] Bruno Buchberger. Ein algorithmus zum Au�nden der Basiselemente des Restklasseringes

nach einem nulldimensionalen Polynomideal. Ph. D. Thesis, Univ. Innsbruck, 1965.

[4] Thierry Coquand. Pattern-matching with dependent types. These Proceedings.

[5] Michael Dummett. Elements of Intuitionism. Oxford, 1977.

[6] Monique Lejeune-Jalabert. E�ectivit�e de calculs polynomiaux. D.E.A. Thesis, Inst. Fourier,

Univ. Grenoble I, 1985.

[7] Carl Jacobsson, Clas L�ofwall. Standard bases for general coe�cient rings and a new con-

structive proof of Hilbert's basis theorem. Journal of Symbolic Computation 1991, Vol 12,

pg. 337 - 371.

[8] Lena Magnusson. These Proceedings.

[9] Per Martin-L�of. Notes on Constructive Mathematics. Almqvist & Wiksell, Stockholm, 1968.

[10] Fred Richman and Gabriel Stolzenberg. Well Quasi-Ordered Sets. To appear in Advances

in Mathematics.

124

Formal Proofs of Combinatorial Completeness

Veronica Gaspes

�

University of Gothemburg and Chalmers University of Technology

June 1992

Abstract

Formal proofs of the combinatorial completeness of two combinator calculi are presented.

The formal language used to write the calculi and the proofs in is Martin-L�of's set theory.

The formalization was machine checked in Alf (Another Logical Framework) where the set

theory and the notions involved in the proofs were implemented. The �rst proof concerns

untyped combinators where unrestricted combinatorial completeness holds. The presenta-

tion of the calculus as well as the proof of combinatorial completeness are from Curry and

Feys' book Combinatory Logic [CF58]. The second proof concerns simply typed combinators

where a typed restricted version of combinatorial completeness holds.

An appendix is attached with the implementation in Alf of the formalization.

1 Introduction

This paper describes formalization of proofs of some theorems involving combinators. The

theorems state the ability of combinators to describe functions without the use of variables. To

express these statements, known as combinatorial completeness, the notion of intuitive function

is formulated so that it can be stated that any such function can be de�ned by means of the

combinators. First an untyped version of the combinators is considered, taken from Curry and

Feys' book Combinatory Logic [CF58]; the de�nitions and the proofs follow the ones presented

there and have been formalized in Martin-L�of's set theory and machine checked using the Alf

system. Next a typed version, with types formed from arbitrary atoms by !, is presented and

a type restricted version of the combinatorial completeness is proved. Two approaches to the

typed calculus are analyzed. Curry's one, where arbitrary combinators may be formed which

are then assigned types; and Church's one where combinators are de�ned as belonging to some

type (this approach is used in the papers by Tait [Tai67] and Sanch��s [San67]).

The work was intended as an exercise in developing a concrete example in Martin-L�of's

set theory. A description of this theory may be found in the book Programming in Martin-

L�of's Type Theory by Nordstr�om, Petersson and Smith [NPS90], from which we borrow the

notational conventions. The implementation of the logical framework provided by Alf was

of crucial importance in actually completing this development. It provides a straightfoward

implementation of the set theory and the sets that are added for the particular problem, and,

in checking the de�nitions and proofs, it helps you by keeping track of a lot of information. A

description of an earlier version of Alf may be found in [ACN90]. The set theory was used by

de�ning new sets that correspond to this particular problem. These de�nitions usualy introduce

�

vero@cs.chalmers.se

125

new primitive notions which are provided by making an inductive de�nition, but there are also

some abbreviations which are stated using de�nitional equality.

All the informal de�nitions, statements and proofs are to be found in the literature. They

are presented here only as an introduction to the formalization, which then is interleaved with

the text and is presented as soon as the notions are introduced. The paper begins with some

references to the presentation of formal systems as given in the �rst chapters of [CF58], em-

phasizing the relation of that approach to the formalization of theories in Martin-L�of's set

theory.

1.1 Formal Systems

The aim of this section is to show some connections between the way formal systems are analyzed

in chapters 1 and 2 in [CF58] and the way one formalizes theories in Martin-L�of's set theory.

In [CF58] a language, the U-language, and a theory, the epi-theory, are described which are

assumed to be understood and are used to comunicate notions and to prove statements. In this

context, the description of a formal system consists of extending the U-language in a particular

way which also extends the theory in the sense that it provides it with more principles of proof.

A formal system is described by a collection of sets: a set of objects introduced by the formal

system, a set of statements or formulae formulated by the formal system (called the elementary

statements which could be understood as the forms of judgement introduced by the formal

system) and a set of theorems proved by the formal system (called the elementary theorems

which may be understood as the evident judgements). The U-language is thus enriched with

the new objects and predicate formers. All these sets are introduced by inductive de�nitions,

and hence the epi-theory is enriched with principles of proof by induction over these sets. The

principles that arise from di�erent inductive de�nitions are carefully explained in [CF58].

It is required that the epi-theory is constructive, so that proofs of elementary theorems or

construction of elementary objects can be produced from the proof of an epi-theorem stating

their existence. If one understands the epi-theory and the U-language as Martin-L�of's set

theory, then the description of a formal system consists of extending the set theory with some

sets. The extended theory may be used to prove elementary statements, i.e. to use the formal

system de�ned; or epi-statements, i.e. to prove statements about the formal system de�ned.

The sets that characterize the formal system are given by inductive de�nitions; there are rules

to introduce the elements of each set and an elimination rule that expresses the principle of

proof or de�nition by induction over that set. The explanation of the induction techniques in

[CF58] may be used as a justi�cation of the elimination rules. Most of the epi-theorems in the

book are then proved by induction which can easily be expressed in set theory.

This approach di�ers from the more usual one in the presentation of formal systems [Kle52],

described as more syntactical in [CF58]. For this other view, the �rst step in the setting of

a formal system consists of de�ning a new language, as formed by the strings over a certain

alphabet. This new language is then called the object language and is never used. The language

in which the formulation is made is called the metalanguage where there are names for the

expressions of the object language. All the use that is done of the formal system introduced is

through the metalanguage. In the more abstract approach above, objects are introduced by an

inductive de�nition thus being formed through speci�c constructors, not merely by sequencing

of characters. This approach is followed also in the de�nition of the forms of judgements and

the set of theorems, where the constructors correspond to the axioms and rules of inference. In

this case the objects introduced are used, thus constituting an extension of the used language.

126

This corresponds exactly to the way one introduces new sets in Martin-L�of's set theory, one has

then an extended language and theory to use.

1.2 Variables

When considering the de�nition of a formal system as extending a language and a theory

with some constants and rules, it remains to be said how variables are to be handled. The

original, primitive language will contain variables, in [CF58] called the intuitive variables, which,

in setting up a formal system, are used to express generality, for instance when describing

a schematic rule or stating some epi-theorems. It may be the case that the formal system

introduced needs to describe functional objects. This is usually done by introducing a category

of objects, the formal variables, for which a rule of substitution is formulated. These special

objects are then introduced as new constants that extend the primitive language. The aim

of combinatory logic is to provide a formal system that analyzes the role of variables and

substitution in such a way that it may be used in the presentation of other formal systems when

describing functional objects. Hence, once combinatory logic has been introduced, neither

variables nor substitution rules need to be considered.

The theory of combinators itself does not contain variables. It will be the case, however,

that to state the theorems about the combinatorial completeness (epi-theorems concerning the

formal systems we will present for the combinators), we will have to consider formal systems

which do contain variables, namely extensions with variables of the original theory. In these

extensions the objects will be understood as functions from objects of the original theory to

objects of the original theory. These variables added in the extensions will be introduced by

only saying that they are objects, no rule of substitution will be stated for them nor will they

take part of any statement but as arbitrary objects. In [CF58] these formal variables are called

indeterminates. They have the property that they may be replaced by an arbitrary object and

thus, the statements involving them are equally valid as general epi-statements using an intuitive

variable instead. The theories for combinators will be formalized in Martin-L�of's set theory by

de�ning new sets for the objects, statements and theorems; the variables of an extension will

be implemented by a particular set.

2 Untyped Combinators

The theory of combinators provides an analysis of the process of substitution through the

notions of function and application. In Sch�on�nkel's original paper [Sch24], a theory of func-

tional objects is introduced to represent incomplete objects without using variables to indicate

the places for the argument. These functional objects, called combinators, are obtained from

certain atomic combinators by means of application as the only operation. Substitution is rep-

resented by application and there are rules that say which object results when the substitution

is performed. The atomic combinators and the rules that de�ne them express the basic ways

of building expressions which contain holes, namely, building an arbitrary constant expression

(not depending in what is provided as argument) and the incomplete expression resulting from

application of an incomplete expression to another.

Following [CF58], the theory of combinators, called H, is de�ned as a formal system in the

sense above, by inductively de�ning the objects, the statements and the theorems. The objects

are formed from the atoms K, to express constant functions, and S, to express the function

which results from the application of a function to another one. Application will be denoted by

127

juxtaposition fa, associating to the left. The statements are of the form f � g, where f and g

are arbitrary objects. The theorems are de�ned by the following axioms and rules

Kab � a (K)

Sfga � fa(ga) (S)

f � f (�)

f � g

g � f (�)

f � g g � h

f � h (�)

f � g

fa � ga (�)

a � b

fa � fb (�)

As an example of an object of this theory, consider SKK, which, according to the rules,

behaves like the identity function, i.e. the function representing the incomplete object which

when completed with any other object as argument produces the same object as result: let x

be an arbitray object, then

SKKx � Kx(Kx) � x

The result we will analyze is the ability of this calculus of functions to describe as an object

any intuitive incomplete object. These incomplete objects are understood to be described as

a combination of previously de�ned functions and variables. It will be shown that any such

object is already present as an object (a function) of the calculus. This property is known

as combinatorial completeness and we need to introduce some way of describing the intuitive

incomplete objects in order to state it more precisely. This result makes it possible to work

with this calculus, instead of using variables and introducing substitution, when de�ning other

formal systems. We will follow Curry's formulation of intuitive incomplete objects and of what

it means for them to be described by a function in the calculus.

A possible way of understanding the intuitively de�nable functions from objects to objects is

by considering combinations formed not only from K and S but involving also certain arguments

x

1

; : : : ; x

n

. This may be done by considering a theory similar to the original one where certain

unspeci�ed objects x

1

; : : : ; x

n

have been added. If we let H' be the theory that results by

adjoining the indeterminates x

1

; : : : ; x

n

to H, then an object h

0

in H' can be understood as

an incomplete object which when completed with objects a

1

; : : : ; a

n

of H yields an object of

H. Thus, what must be shown is that for every h

0

an object h of H may be de�ned so that it

represents the incomplete object h

0

as a function from objects in H to objects in H. The way

of proving that this term h represents h

0

as a function is done by showing that

hx

1

: : : x

n

� h

0

128

is a theorem ofH'. This means, because h does not contain any of the indeterminates x

1

; : : : ; x

n

,

that for every tuple a

1

; : : : ; a

n

of objects of H, the application ha

1

: : : a

n

is equal to the object

that results by replacing the indeterminates in h

0

by a

1

; : : : ; a

n

. Before showing how to de�ne

h in H from h

0

in H', we will show how to formalize, in Martin-L�of's set theory, the theory H

and its extensions.

To proceed, the notion of extension by adjoining indeterminates must be formulated more

precisely. While a theory is characterized by the set of objects, the set of statements and the set

of theorems, an extension is de�ned by the set of indeterminates adjoined. Thus, a theory and

its extensions may be described as a family of theories indexed by the sets of indeterminates,

i.e. by a family of objects, a family of statements and a family of theorems, all indexed by the

sets of indeterminates. All theories in the family are di�erent, however there is a natural way of

identifying an arbitrary object of a theory with the one built in the same way in an extension.

This is made explicit by injections of a theory to an extended one. When considering this, the

statement about hx

1

: : : x

n

�h

0

must be formulated more precisely considering these injections:

because h is a term in H it must be injected into H' for the application to x

1

; : : : ; x

n

to be an

element in the corresponding set of objects and the statement to make sense.

The formalization consists of de�ning sets and families of sets in the set theory to represent

the notions being formalized. The following is a presentation of such a formalization for the

families of theories of combinators above:

� Each set of indeterminates is a �nite set, hence it will be represented by the �nite sets

of Martin-L�of's theory N

n

. These sets will be de�ned as a family indexed by the length

n. The introduction rules for this family correspond to a �nite set being formed by

injecting all the elements in the previous one and putting one element more. There is no

introduction rule for the �nite set of length 0.

IS-formation

IS(n) Set [n 2 N]

IS-introduction-1

n 2 N

put(n) 2 IS(s(n))

IS-introduction-2

n 2 N x 2 IS(n)

inject(n; x) 2 IS(s(n))

An elimination rule is given for each set IS(n) which allows proof of statements under

the assumption of having an element in the corresponding segment. The set IS(0) has no

introduction rule, thus its elimination looks like ?-elimination:

129

IS-elimination-0

P (x) Set [x 2 IS(0)] p 2 IS(0)

IS0E(P; p) 2 P (p)

The IS(s(n)) has the two introduction rules above, thus,

IS-elimination-s

n 2 N

P (x) Set [x 2 IS(s(n))]

e 2 P (put(n))

d(q) 2 P (inject(n; q)) [q 2 IS(n)]

p 2 IS(s(n))

ISsE(n; P; e; d; p) 2 P (p)

This constant is de�ned by the equalities

ISsE(n; P; e; d; put(n)) = e

ISsE(n; P; e; d; Inject(n; q)) = d(q)

� The family Ob indexed by the sizes of the initial segments represents the family of objects

indexed by the extensions:

Ob-formation

Ob(n) Set [n 2 N]

The introduction rules correspond to the formation of the objects in an extension with n

indeterminates:

Ob-introduction-1

n 2 N

K(n) 2 Ob(n)

Ob-introduction-2

n 2 N

S(n) 2 Ob(n)

Ob-introduction-3

n 2 N x 2 IS(n)

Var(x; n) 2 Ob(n)

(corresponding to the variable x in an extension with n variables)

Ob-introduction-4

n 2 N f; a 2 Ob(n)

App(f; a; n) 2 Ob(n)

130

There is an elimination rule for the set of objects in each extension:

Ob-elimination

n 2 N

P (x) Set [x 2 Ob(n)]

k 2 P (K(n))

s 2 P (S(n))

v(y) 2 P (Var(y; n)) [y 2 IS(n)]

a(h; z; ih; iz) 2 P (App(h; z; n)) [h; z 2 Ob(n); ih 2 P (h); iz 2 P (z)]

o 2 Ob(n)

ObE(n; P; k; s; v; a; o) 2 P (o)

This constant is de�ned by the equalities

ObE(n; P; k; s; v; a;K(n)) = k

ObE(n; P; k; s; v; a;S(n)) = s

ObE(n; P; k; s; v; a;Var(y; n)) = v(y)

ObE(n; P; k; s; v; a; (App(h; z; n)) = a(h; z;

ObE(n; P; k; s; v; a; h);

ObE(n; P; k; s; v; a; z))

� The family Form of the statements or formulae:

Form-formation

Form(n) Set [n 2 N]

There is only one kind of statement, equality between objects:

Form-introduction

n 2 N a; b 2 Ob(n)

a �

n

b 2 Form(n)

Form-elimination

n 2 N

P (x) Set [x 2 Form(n)]

e(a; b) 2 P (a �

n

b) [a; b 2 Ob(n)]

f 2 Form(n)

FormE(n; P; e; f) 2 P (f)

FormE(n; P; e; a �

n

b) = e(a; b)

131

� The family ` of the theorems:

`-formation

`

n

f Set [n 2 N; f 2 Form(n)]

The introduction rules correspond to the axioms and inference rules for asserting equality

between terms. Only some of them are exhibited here, the ones corresponding to (K), (�)

and (�); the rest are coded in the same way.

`-introduction-K

n 2 N a; b 2 Ob(n)

kk(a; b; n) 2 `

n

App(App(K; a; n); b; n) �

n

a

`-introduction-�

n 2 N a 2 Ob(n)

�(a; n) 2 `

n

a �

n

a

`-introduction-�

n 2 N f; g; a 2 Ob(n) p 2 `

n

f �

n

g

�(f; g; a; n; p) 2 `

n

App(f; a; n) �

n

App(g; a; n)

We have thus de�ned the sets that describe a family of theories, each set of each theory de-

�ned inductively. The elimination rules which close the de�nitions are used whenever de�nition

by recursion or proof by induction on a given set is required.

There is a natural way of understanding an object of a theory as an object of an extension,

built in the same way but in the extended theory. When formalizing the theorem about combi-

natorial completeness this injection is required and thus must be stated formally. This is done

by means of a function

O 2 (�m;n 2 N)(m � n) � Ob(m) � Ob(n)

which given m;n with m � n will take an object in an extension with m indeterminates into

\itself" in an extension with n indeterminates. The de�nition of O is based on the injection of

an initial segment of length m into the one of length n. To implement this de�nitions � will be

de�ned by �rst de�ning < as follows:

<-formation

m < n Set [m;n 2 N]

The introduction rules state that < is the transitive closure of the relation that a number is less

than its succesor:

<-introduction-1

n 2 N

OneStep(n) 2 n < s(n)

132

<-introduction-2

m;n; o 2 N m < n n < o

�(m;n; o) 2 m < o

The elimination rule closes the de�nition by stating the principle of proof or de�nition which

allows us to use the knowledge that a number is less than another one according to this de�nition:

<-elimination

P (x; y; z) Set [x; y 2 N; z 2 m < n]

e(x) 2 P (x; s(x);OneStep(x)) [x 2 N]

d(s; t; u; q; r; i; h) 2 P (s; u; �(s; t; u))

2

6

6

6

6

6

4

s; t; u 2 N;

q 2 s < t;

r 2 t < u;

i 2 P (s; t; q);

h 2 P (t; u; r)

3

7

7

7

7

7

5

m;n 2 N

p 2 m < n

<E(P; e; d;m; n; p) 2 P (m;n; p)

<E(P; e; d;m; s(m);OneStep(m)) = e(m)

<E(P; e; d;m; o; �(m;n; o; q; r)) = d(m;n; o; q; r;< E(P; e; d;m; n; q); < E(P; e; d; n; o; r))

With this, the de�nition of O is by cases on m � n � m = n _m < n. If m = n it is the

identity. If m < n it follows by induction on this fact, by using the elimination rule for the set

<. The two cases that must be considered are

n is the succesor of m. By induction on Ob(m) each case of object formation is

considered and translated to the corresponding element in Ob(n),

there is a number o such that m < o and o < n. O is de�ned to be the composition of

the functions the induction hypothesis yields for m < o and o < n.

In a similar way the formulae of a theory may be injected as formulae of an extension by

means of a function

F 2 (�m;n 2 N)(m � n) � Form(m) � Form(n)

which is de�ned in the same way as O.

2.1 De�nition of Abstraction

We now de�ne, for any object h

0

in H', an object h in H that represents it as a function

from objects in H to objects in H, and prove this fact. The de�nition and the proof are by

induction on the size of the extension, the inductive step being based on the de�nition and proof

corresponding to passing from a theory with at least one indeterminate to one with the extra

indeterminate removed. In order to describe the de�nition we will use the notation of bracket

abstraction for the object de�ned: if h

0

is an object in H', we shall write [x

1

; : : : ; x

n

]h

0

for the

h in H. With this notation the induction step in the de�nition may be expressed as

133

[x

1

; : : : ; x

n

; x]h

0

� [x

1

; : : : ; x

n

] ([x]h

0

)

The de�nition of [x]h

0

is by induction on h

0

. For each way of building objects in an extension

containing x, it is analyzed what function of x is intended and so an object which represents

such a function in a theory without x is de�ned. The following cases arise:

� h

0

is K. When thought of as a function of x from objects of H to objects of H, it is the

constant function with value K. Thus we de�ne [x]K to be KK.

� h

0

is S. With the same argument as for K we de�ne [x]S to be KS.

� h

0

is a variable of the extension. Then there are two cases to consider; either the variable

is x or some other variable y. In the case it is y, the same argument as for K and S, yields

the de�nition of [x]y to be Ky. In the case it is x the de�nition is such that the function

is the identity function. This is because x is the identity function when considered a

function of x. Thus, for this case we de�ne [x]x to be SKK which was shown above to

behave as the identity.

� h

0

is an application fg. Both f and g may contain x and thus are to be considered as

functions of x. The induction hypothesis yields the de�nitions of the two functions [x]f

and [x]g. The object that results when performing the substitution of an object of H for

x in fg may be analyzed as formed by the application of the object that results from

performing the substitution in f to the one that results from performing it in g. In terms

of [x]f and [x]g this is expressed by the application of ([x]f)o to ([x]g)o where o is the

object substituted for x. We thus de�ne [x](fg) to be S ([x]f) ([x]g).

The formalization of these de�nitions proceeds by �rst de�ning [x]h

0

by induction on the

construction of h

0

, an object in a theory that contains at least one variable, i.e. by applying the

elimination rule for Ob to h

0

2 Ob(s(n)) for some natural number n. Thus, by assuming that

one has such an h

0

, an object in Ob(n) is de�ned as the abstraction of the extra variable from

h

0

. The cases that arise in the induction on h

0

are the following:

� h

0

is K(s(n)). Then de�ne the abstraction as the constant function with value K in Ob(n):

App(K(n);K(n); n).

� h

0

is S(s(n)). Then de�ne the abstraction to be the constant function with value S in

Ob(n): App(K(n);S(n); n).

� h

0

is Var(x; s(n)) where x 2 IS(s(n)). Then one must analyze whether x is the variable to

be abstracted (the variable that extends the theory from n to s(n)) or any other variable

(already present in the theory for n). This is realized by making an induction on x, i.e.

by applying the elimination rule for IS to x 2 IS(s(n)). The two cases that arise are

{ x is put(n). Then de�ne the abstraction to be the identity function in Ob(n):

App(App(S(n);K(n); n)K(n); n).

{ x is inject(y; n) where y is in IS(n). Then de�ne the abstraction to be the constant

function with value y in Ob(n): App(K(n);Var(y; n); n).

134

� h

0

is an application App(f; a; s(n)). Then the induction hypothesis yields a value for f

in Ob(n), say fh, and a value for a in Ob(n), say ah, then de�ne the abstraction to be

App(App(S(n); fh; n); ah; n).

We have thus de�ned an element in Ob(n) assuming n 2 N and h

0

in Ob(s(n)). We will

now de�ne, by induction on n, an element in Ob(0) from an element h

0

in an extension with n

indeterminates, the abstraction of all the variables in the extension. Using induction on n two

cases arise

� If n is 0, then h

0

is already an element in Ob(0).

� If n is the succesor of some natural number t, the induction hypothesis yields a method

for de�ning an element in Ob(0) for every h in Ob(t). Then take the element in Ob(t)

which results from appliyng the de�nition above and �nally apply the method yielded by

the induction hypothesis to this element.

One must now prove that the abstractions so de�ned behave as planned, i.e. that hx

1

: : : x

n

�

h

0

. This proof follows the same lines as the de�nition of h; again it is carried out by induction

on n, the crucial case being the proof that ([x]h

0

)x� h

0

, which again is an induction on the

construction of h

0

:

� h

0

is K, S, or a variable y di�erent from x (the de�nition of [x]h

0

is the same for these

three cases, Kh

0

). Then we have ([x]h

0

) x � Kh

0

x� h

0

.

� h

0

is the variable x. Then we have ([x]x)x � SKKx� x.

� h

0

is the application fg. Then we have

([x](fg))x � S ([x]f) ([x]g)x � (([x]f)x) (([x]g)x)

The induction hypothesis yields ([x]f)x � f and ([x]g)x � g and hence, by application of

the rules �, � and � ,

(([x]f)x) (([x]g)x) � fg

With the de�nitions for the theories of combinators above, and letting h

0

be the object in

an extension with n indeterminates and h be [x

1

: : : x

n

]h

0

in the original theory (an extension

with no indeterminates), the fact that h represents h

0

as a function is formalized by:

`

n

app

�

(O(h); n) �

n

h

0

where app

�

(x; n) is de�ned by induction on n as the application of x 2 Ob(n) to all the indeter-

minates of the extension. The injection of h into the extension with n indeterminates is needed

for the application to x

1

; : : : ; x

n

to make sense. As in the informal proof above this is shown

by induction on n, the induction step being based on the proof of

`

s(n)

App(O(h); put(n); n) �

s(n)

h

0

where h

0

is an object in an extension with s(n) indeterminates and h is the corresponding [x]h

0

in

an extension with n indeterminates, the abstracted variable being the last element of the initial

segment IS(s(n)), i.e. put(n). The induction on h

0

used in the informal proof is implemented

135

by an application of the elimination rule for Ob(n). The � that are said to hold in the informal

proof hold by de�nitional equality, while the � require the application of the rules that de�ne

`

n

.

The de�nition of [x

1

: : : x

n

]h

0

together with the proof of `

n

app

�

(O(h); n) �

n

h

0

constitute

a proof of

(�n 2 N)(�h

0

2 Ob(n))(�h 2 Ob(0)): `

n

app

�

(O(h); n) �

n

h

0

which formalizes the combinatorial completeness for untyped combinators. This formalization

of the theories and the proofs was edited in Alf, the code of this implementation is attached as

an appendix.

3 Typed Combinators

In this section we shall introduce a theory of typed combinators and show that a restricted ver-

sion of combinatorial completeness holds. After a short motivation for the introduction of types,

the theory and the notion of extension by adjoining indeterminates will be presented together

with a formalization in Martin-L�of's set theory. Next, a typed version of the combinatorial

completeness will be proved, followed by the corresponding formalization.

Di�erent analysis of combinatory logic as a formalism to express the process of substitu-

tion in formalized theories end in the introduction of types to classify combinators in di�erent

categories. In Curry and Feys [CF58] the types are associated with semantical categories. The

coding of propositional logic as an extension of combinatory logic with a constant P for form-

ing implication (Pfg codes f � g), a new statement constructor 7�! for derivability (7�! f

codes f is derivable) and rules for proving that certain objects are derivable (7�! Pf(Pgf)

codes the axiom f � g � f) results in an inconsistent theory in the sense that for every object

f , it is a theorem that 7�! f . This inconsistency is avoided by restricting the arguments of

7�! to be propositions. This implies classifying the objects to isolate the category of proposi-

tions. This gives rise to the theory of functionality presented in [CF58] where, from the type

of propositions, a functional hierarchy is built. Martin-L�of presents an argument for classifying

the combinators in syntactical categories. The untyped combinators are rejected as a basis for

the presentation of formal systems due to the fact that equality between them is not decidable

and thus cannot be used as de�nitional equality; and that abbreviations may not be eliminable

(consider the term SII(SII)). The solution comes from analyzing expressions into saturated

and unsaturated as Frege [Fre84] did. This is expressed by means of types, starting from a

type for saturated expressions and building a functional hierarchy from it for the unsaturated

expressions according to the kind of argument they expect. This system is presented in chapter

3 of [NPS90] for the �-calculus.

Di�erent notions of meaningfullness led Curry and Church to di�erent ways of considering

the typed versions of their calculi. Curry's approach consists of assigning types to the un-

typed objects while Church's consists of designing a new calculus where only typed objects are

formed. We will consider the typed version of the combinatorial completeness statement in both

approaches.

In Curry's approach a new set of objects is de�ned, namely the types, and a new judgement

form, that a combinator has a type. There are axioms and rules de�ning the provable judgments

of this form. Thus, the notions and theorems involving the combinators are left as they were,

and new theorems are stated involving the types. In the case of the combinatorial completeness,

it is said that, if after assigning types to the variables of the etension an object can be assigned

136

a type, then the abstraction of that object (de�ned for untyped combinators) can be assigned a

type, namely the function type from the types of the variables to the type of the original object.

Following Church's approach, everything must be done again from the very begining. Once

the types are de�ned, for each type it is said which are the combinators of that type; hence,

instead of a set of combinators there is a family of sets, indexed by the types. The equality

judgement is then stated for typed combinators. The extensions considered in order to de�ne

abstraction are extensions with typed variables and the abstraction is de�ned among typed

combinators.

What follows presents the formalization of the de�nitions of abstraction and the proofs that

it behaves as intended for the simply typed combinators following both approaches. Church's

version is presented �rst in full detail, while Curry's approach is only sketched. Both were

checked in Alf and the appendix contains the Alf implementation for Church's version.

3.1 Types a la Church

The types are formed from arbitrary atomic types by means of the function arrow !. The

objects are not introduced as a single set but as a family indexed by the types so there is a set

of objects for each type. The elementary statements are equalities between objects of the same

type. The restricted version of combinatorial completeness that can be proved takes the types of

the incomplete object and the variable to be abstracted into account and forms a function of the

adequate type. In order to describe the incomplete objects we must again consider extensions

of the original theory by adjoining indeterminates, in this case typed indeterminates.

In the following de�nition of the theory of typed combinators, let �; �;
; : : : be variables

of the epi-theory ranging over types. The objects of each type are de�ned from typed versions

of K, S and application: For all types �; �, there is a constant

K

�;�

: �! � ! �

For all types �; �;
 there is a constant

S

�;�;

: (�! � !
)! (�! �)! �!

And for all types �; � there is an operation of application

M : �! � N : �

(MN) : �

The formulae are equalities between objects belonging to the same type, so if f and g are objects

in the same type �, then f �

�

g is an elementary formula. The theorems are characterized

by essentially the same rules as in the untyped theory but also considering the typing of the

objects involved:

137

K

�;�

ab �

�

a (K)

S

�;�;

fga �

fa(ga) (S)

f �

�

f (�)

f �

�

g

g �

�

f (�)

f �

�

g g �

�

h

f �

�

h (�)

f �

�!�

g

fa �

�

ga (�)

a �

�

b

fa �

�

fb (�)

As an example of the objects de�nable in this theory, consider S

�;�!�;�

K

�;�!�

K

�;�

: �! �,

the typed identity function: let x be any object of type �, then

S

�;�!�;�

K

�;�!�

K

�;�

x �

�

K

�;�!�

x(K

�;�

x) �

�

x

We will have to consider extensions of this theory by adjoining indeterminates to express

the intuitive incomplete objects. In order for an indeterminate to be adjoined, it must be

introduced as an object of some type, and thus must have a type associated to it. We will use

the notation x

�

for an indeterminate x which has been assigned type �. In an extension with

the indeterminates x

�

1

1

; : : : ; x

�

n

n

the objects of a given type are built as above with the addition

of letting variables of type � be objects of type �. An extension is then no longer a �nite set,

but a �nite set together with an assignment of types to each of the elements of this set.

The formalization in set theory proceeds by considering that each theory consists of a

family (not only a set as in the untyped case) of objects, formulae and theorems, and by

considering a family of such theories indexed by extensions. Again the notion of extension

must be made precise, in this case to take into account that there is no longer a set of objects

to which indeterminates are adjoined, but a family of them. An extension of the theory of

typed combinators may be characterized by a set of indeterminates together with a way of

adjoining them to some sets of objects, thas is, together with a way of assigning types to them.

Thus, not only the sets of indeterminates must be formalized (by the initial segments of the

natural numbers) but also the type assignments to these sets. These will be formalized by �nite

sequences of types of length n for the type assignements for the initial segment of length n. The

formalization, which is roughly as for the untyped case, requires the de�nition of the following

sets:

� A set Type for the types of the combinators

Type-formation

Type Set

138

The set Type is inductively generated and there are two introduction rules; one for the

atomic types, that is, the type variables, and one for function types. We let the type

variables be indexed by some given set Atom:

Type-introduction 1

� 2 Atom

var(�) 2 Type

Type-introduction 2

� 2 Type � 2 Type

�! � 2 Type

Type-elimination

P (t) Set [t 2 Type]

b(at) 2 P (var(at))[at 2 Atom]

i(�; �; I

�

; I

�

) 2 P (�! �)[�; � 2 Type; I

�

2 P (�); I

�

2 P (�)]

� 2 Type

TypeRec(P; b; i; �) 2 P (t)

TypeRec(P; b; i; var(at)) = b(at)

TypeRec(P; b; i; � ! �) = i(�; �;TypeRec(P; b; i; �);TypeRec(P; b; i; �))

� IS(n) Set [n 2 N]

The �nite sets (the sets of indeterminates). The same sets as for the untyped case.

� A family TA for the type assignements to the sets of indeterminates:

TA-Formation

TA(n) Set [n 2 N]

Each element in TA(n) formalizes a type assignement for IS(n) as a sequence of length n

of elements of Type:

TA-introduction-1

Nil 2 TA(0)

TA-introduction-2

n 2 N ta 2 TA(n) � 2 Type

Cons(n; ta; �) 2 TA(s(n))

TA-elimination

P (x; y) Set [x 2 N; y 2 TA(x)]

e 2 P (0;Nil)

d(m; t; �; i) 2 P (s(m);Cons(m; t; �))[m 2 N; t 2 TA(m); � 2 Type; i 2 P (m; t)]

n 2 N

ta 2 TA(n)

TAE(P; e; d; n; ta) 2 P (n; ta)

139

TAE(P; e; d; 0;Nil) = e

TAE(P; e; d; s(n);Cons(n; t; �)) = d(n; t; �;TAE(P; e; d; n; t))

� The family of objects of each type in each extension is de�ned by means of Ob. The set

Ob(n; ta; �) de�nes the set of objects of type � in an extension with n variables and a type

assignement ta to the indeterminates of the extension. The introduction rules correspond

to the formation of the terms:

Ob-formation

Ob(n; ta; �) Set [n 2 N; ta 2 TA(n); � 2 Type]

Ob-introduction-1

n 2 N ta 2 TA(n) �; � 2 Type

K(n; ta; �; �) 2 Ob(n; ta; �! � ! �)

Ob-introduction-2

n 2 N ta 2 TA(n) �; �;
 2 Type

S(n; ta; �; �;
) 2 Ob(n; ta; (�! � !
)! (�! �)! �!
))

Ob-introduction-3

n 2 N ta 2 TA(n) � 2 Type x 2 IS(n) p 2 VarType(n; ta; x; �)

Var(n; ta; �; x; p) 2 Ob(n; ta; �)

In this last rule, which corresponds to introducing an indeterminate as an object of type �

when the extension is given by n and ta, the premise p 2 VarType(n; ta; x; �) corresponds

to a proof that the indeterminate x (an element in IS(n)) has the type � in ta. The set

VarType, which formalizes this statement, is de�ned bellow.

Ob-introduction-4

n 2 N ta 2 TA(n) �; � 2 Type f 2 Ob(n; ta; �! �) a 2 Ob(n; ta; �)

App(n; ta; �; �; f; a) 2 Ob(n; ta; �)

Ob-elimination

n 2 N

ta 2 TA(n)

P (x; y) Set [x 2 Type; y 2 Ob(n; ta; x)]

k(u; v) 2 P (u! v ! u;K(n; ta; u; v)) [u; v 2 Type]

s(u; v; w) 2 P ((u!v!w)!(u!v)!u!w;S(n; ta; u; v; w)) [u; v; w 2 Type]

v(u; v; w) 2 P (u;Var(n; ta; u; v; w)) [u 2 Type; v 2 IS(n); w 2 VarType(n; ta; v; u)]

a(u; v; w; x; iw; ix) 2 P (v;App(n; ta; u; v; w; x))

2

6

6

6

6

6

4

u; v 2 Type;

w 2 Ob(n; ta; u! v);

x 2 Ob(n; ta; u);

iw 2 P (u! v; w);

ix 2 P (u; x)

3

7

7

7

7

7

5

� 2 Type

p 2 Ob(n; ta; �)

obE(n; ta; P; k; s; v; a; �; t) 2 P (�; t)

140

obE(n; ta; P; k; s; v; a; � ! � ! �;K(n; ta; �; �)) = k(�; �)

obE(n; ta; P; k; s; v; a; (� ! � !
)! (�! �)! �!
;S(n; ta; �; �;
))

= s(�; �;
)

obE(n; ta; P; k; s; v; a; �;Var(n; ta; �; x; p)) = v(�; x; p)

obE(n; ta; P; k; s; v; a; �;App(n; ta; �; �; f; x)) = a(�; �; f; x;

obE(n; ta; P; k; s; v; a; � ! �; f);

obE(n; ta; P; k; s; v; a; �; x))

� In order to formalize the variable x

�

we will de�ne a set of proofs of a variable (an element

in some IS) being assigned a type by a type assignement, i.e. a set that formalizes that

the type of the i-th element in an initial segment is assigned the type in the i-th possition

of the type assignment. VarType(n; ta; x; �) de�nes the predicate stating that the type

assigned to x by the type assignement ta is �.

VarType-formation

VarType(n; ta; x; �) Set [n 2 N; ta 2 TA; x 2 IS(n); � 2 Type]

VarType-introduction-1

n 2 N ta 2 TA(n) � 2 Type

PutType(n; ta; �) 2 VarType(s(n);Cons(n; ta; �); put(n); �)

VarType-introduction-2

n 2 N ta 2 TA(n) �; � 2 Type y 2 IS(n) p 2 VarType(n; ta; �; y)

InjectType(n; ta; �; �; y; p) 2 VarType(s(n);Cons(n; ta; �); inject(n; y); �)

The �rst introduction rule states that the type assigned to the last variable in an initial

segment of length n is the last type in a type assignement of this length. The second one

states that the type of a variable present already in the previous initial segment has the

type given to it in the corresponding shorter type assignment.

VarType-elimination

n 2 N

ta 2 TA(n)

P (x; y; z; t) Set

2

6

4

x 2 IS(s(n));

y; z 2 Type;

t 2 VarType(s(n);Cons(n; ta; z); x; y)

3

7

5

e(x) 2 P (put(n); x; x;PutType(n; ta; x)) [x 2 Type]

d(x; y; z; t) 2 P (inject(n; z); x; y; InjectType(n; ta; x; y; z; t))

2

6

4

x; y 2 Type;

z 2 IS(n);

t 2 VarType(n; ta; z; x)

3

7

5

i 2 IS(s(n))

�; � 2 Type

p 2 VarType(s(n);Cons(n; ta; �); i; �)

VarTypeE(n; ta; P; e; d; i; �; �; p) 2 P (i; �; �; p)

141

VarTypeE(n; ta; P; e; d; put; �; �;PutType(n; ta; �)) = e(�)

VarTypeE(n; ta; P; e; d; inject(n; x); �; �; InjectType(n; ta; �; �; x; p)) = d(�; �; x; p)

� There is a set which formalizes the formulae of the typed combinators, with only one

introduction rule, corresponding to the only way of building formulae, i.e. equality between

objects of the same type in a given extension:

Form-formation

Form(n; ta; �) Set [n 2 N; ta 2 TA(n); � 2 Type]

Form-introduction

n 2 N ta 2 TA(n) � 2 Type f; g 2 Ob(n; ta; �)

f �

n;ta

g 2 Form(n; ta; �)

� Finally, there is a set describing the theorems, i.e. the provable equalities. The introduc-

tion rules correspond to the axioms and inference rules. As in the untyped case we shall

only present some of them, the ones corresponding to (K), (�) and (�).

`-formation

`

n;ta

f Set [n 2 N; ta 2 TA(n); � 2 Type; f 2 Form(n; ta; �)]

`-introduction-K

n 2 N ta 2 TA(n) �; � 2 Type a 2 Ob(n; ta; �); b 2 Ob(n; ta; �)

kk(n; ta; �; �; a; b) 2 `

n;ta

App(App(n; ta; �; � ! �;K; a); n; ta; �; alpha; b) �

n;ta

a

`-introduction-�

n 2 N ta 2 TA(n) � 2 Type a 2 Ob(n; ta; �)

�(n; ta; �; a) 2 `

n;ta

a �

n;ta

a

`-introduction-�

n 2 N

ta 2 TA(n)

�; � 2 Type

f; g 2 Ob(n; ta; �! �)

a 2 Ob(n; ta; �)

p 2 `

n;ta

f �

n;ta

g

�(n; ta; �; �; f; g; a; p) 2 `

n;ta

App(n; ta; �; �; f; a) �

n;ta

App(n; ta; �; �; g; a)

142

As for the untyped case, there is a natural way of thinking of an object in a theory as an

object in an extension, as built up in the same way. This is made explicit by a function O (as

before) which takes an object in a theory and builds up the corresponding one in the extension.

For this typed theory, we will only consider the abstraction of one variable, the induction on n

required to abstract all the n variables of an extension is essentially the same as for the untyped

theory. Thus we will only require the injection of a theory into the next one, which is provided

by the function

O 2 (�n 2 N)(�ta 2 TA(n))(��; � 2 Type)(Ob(n; ta; �)) � Ob(s(n);Cons(n; ta; �); �)

The function O takes a natural number n, a type assignment ta of length n, a type � to extend

the type assignment and a type � which is the type of the object in question. It then takes

an object of type � in an extension with n indeterminates which are assigned types by ta and

produces an object of type � built in the same way in a theory with s(n) indeterminates assigned

types by Cons(n; ta; �). The de�nition is by induction on Ob(n; ta; �), formally by application

of the elimination rule for this set.

This concludes the formalization of the theory of simply typed combinators, the next section

considers the de�nition of the typed version of abstraction.

3.1.1 Typed Abstraction

Consider an extension with n indeterminates x

�

1

1

; : : : ; x

�

n

n

. By adding one more indeterminate

x

�

, the objects h

0

: � in this new theory are such that when replacing an object of type � for x

�

in them, they yield an object of type �. We will show that these objects were already present

in the theory without x

�

as functions h : �! �. This will be done by de�nining for each h

0

: �

an object [x

�

]h

0

: �! � and then showing that

([x

�

]h

0

)x

�

�

s(n);�

h

0

Both the de�nition of [x

�

]h

0

and the proof of ([x

�

]h

0

)x

�

�

s(n);�

h

0

are by induction on h

0

being

an object of type � in the extension with x

�

1

1

; : : : ; x

�

n

n

; x

�

. Except for the type information

involved, the de�nition proceeds in the same way as for the untyped case in all cases but

the one for the variable. In the untyped case, the analysis of which variable is considered

is by induction on the de�nition of being in the corresponding initial segment, which alone

characterizes the extension. In the typed case, the analysis is an induction on the de�nition

of which type is assigned to the variable in the extension, because it is this de�nition which

follows the construction of the extension, it takes into account both the initial segment and the

type assignement. The de�nition of [x

�

]h

0

will be done by analyzing what function of x

�

h

0

is

for each of the forms of constructing h

0

:

� h

0

: � is K

1

;

2

(� is

1

!

2

!

1

). When thought of as a function of x

�

it is the

constant function with value K

1

;

2

. Thus we de�ne [x

�

]K

1

;

2

: � ! (

1

!

2

!

1

) to

be K

1

!

2

!

1

;�

K

1

;

2

.

� h

0

: � is S

1

;

2

;

3

(� is (

1

!

2

!

3

)! (

1

!

2

)!

1

!

3

). With the same argument

as for K

1

;

2

we de�ne [x

�

]S

1

;

2

;

3

: �! ((

1

!

2

!

3

)! (

1

!

2

)!

1

!

3

) to be

K

(

1

!

2

!

3

)!(

1

!

2

)!

1

!

3

;�

S

1

;

2

;

3

.

143

� h

0

: � is a variable of the extension. Then there are two cases to consider according to

whether the variable is x

�

(� is �) or some other variable y

(� is
). In the case it is

y

, by the same argument as for K

1

;

2

and S

1

;

2

;

3

, the de�nition of [x

�

]y

: � !
 is

K

;�

y

. In the case it is x

�

the de�nition is such that the function is the identity function,

as x

�

is when considered a function of x

�

. Thus, for this case we de�ne [x

�

]x

�

: �! � to

be S

�;�!�;�

K

�;�!�

K

�;�

which was shown above to behave as the identity.

� h

0

: � is an application fg where both f :

1

!

2

and g :

1

may contain x

�

and thus

are to be considered as functions of x

�

. The induction hypothesis yields the de�nitions

of the two functions [x

�

]f : � !

1

!

2

and [x

�

]g : � !

1

. The object that results

when performing the substitution of an object of type � for x

�

in fg may be analyzed

as formed by the application of the object that results from performing the substitution

in f to the one that results from performing it in g. In terms of [x

�

]f and [x

�

]g this is

expressed by the application of ([x

�

]f)o to ([x

�

]g)o, where o is the object substituted for

x

�

. We thus de�ne [x

�

](fg) : �!

2

to be S

�!

1

!

2

;�!

1

;�

([x

�

]f)([x

�

]g).

The formalization of this de�nition is as follows. Given n 2 N, ta 2 TA(n), � 2 Type and

h

0

2 Ob(s(n);Cons(n; ta; �); �), i.e. an object of type � in an extension with s(n) indeterminates,

the last of which is assigned type �; apply the elimination rule for Ob to h

0

to �nd an element in

Ob(n; ta; �! �) according to the de�nition above. The premises of this rule yield the following

cases:

� h

0

is K(s(n);Cons(n; ta; �);

1

;

2

). Then de�ne the abstraction to be the constant function

with value K in Ob(n; ta; �! (

1

!

2

!

1

):

App(n; ta;K(n; ta;

1

!

2

!

1

; �);K(n; ta;

1

;

2

))

(note that we did not write the type parameters of App. They may be restored by looking

at the types of the arguments. We will continue with this convention along this de�nition).

� h

0

is S(s(n);Cons(n; ta; �);

1

;

2

;

3

). Then de�ne the abstraction to be the constant func-

tion with value S in Ob(n; ta; �! (

1

!

2

!

3

)! (

1

!

2

)!

1

!

3

):

App(n; ta;K(n; ta; (

1

!

2

!

3

)! (

1

!

2

)!

1

!

3

; �);S(n; ta;

1

;

2

;

3

))

� h

0

is Var(s(n);Cons(n; ta; �);
; x; p), where x 2 IS(s(n)), and

p 2 VarType(s(n);Cons(n; ta; �); x;
)

is a proof that the type assigned to x in the extension is
. Then one must analyze whether

x is the variable to be abstracted (the variable that extends the theory from n to s(n))

or any other variable (already present in the theory for n). This is done by making an

induction on p, i.e. by applying the elimination rule for

VarType(s(n);Cons(n; ta; �); x;
)

on p. The two cases that arise correspond to whether x is the last variable of the extension,

the one we are abstracting, or some other:

144

{ p is PutType(n; ta; �). Then de�ne the abstraction to be the identity function in

Ob(n; ta; �! �):

App(n; ta;App(n; ta;S(n; ta; �; �! �; �);K(n; ta; �; � ! �))K(n; ta; �; �))

{ p is InjectType(n; ta; �; �; y; q) where y is in IS(n) (a variable already present in the

extension with only n variables) and q 2 VarType(n; ta; y; �) is a proof that the type

assigned to y in this theory is �. Then de�ne the abstraction to be the constant

function with value y in Ob(n; ta; �! �):

App(n; ta;K(n; ta; �; �);Var(n; ta; �; y; q)):

� h

0

is an application App(s(n);Cons(n; ta; �);

1

;

2

; f; a), where

f 2 Ob(s(n);Cons(n; ta; �);

1

!

2

)

a 2 Ob(s(n);Cons(n; ta; �);

1

)

In this case the elimination rule provides also induction hypothesis for f and a which

for this de�nition yield that both the abstraction for f and a are de�ned, say fh 2

Ob(n; ta; � !

1

!

2

) and ah 2 Ob(n; ta; � !

1

). Then the corresponding object for

the application is

App(n; ta;App(n; ta;S(n; ta; �!

1

!

2

; �!

1

; �)); fh); ah):

The next step is to prove that the de�ned function has the intended behaviour, i.e. that

([x

�

]h

0

)x

�

�

s(n);�

h

0

. This proof is again by induction on h

0

: � and as for the untyped case

follows the de�nition of ([x

�

]h

0

). It is formalized by an application of the elimination rule

for Ob(s(n);Cons(n; ta; �); �) and also follows the de�nition of the function. From both the

de�nition of the function and the proof about its behaviour we obtain a proof of

(�n2 N)(�ta 2 TA(n))(��; � 2 Type)(�h

0

2 Ob(s(n);Cons(n; ta; �); �))

(�h 2 Ob(n; ta; �! �))App(O(h); put(n; ta;PutType(n; ta; �))) �

s(n);�

h

0

where put(n; ta;PutType(n; ta; �)) is the variable added with type �.

The formalization of this proof, as it was edited and checked with the Alf system may be

found in the appendix.

3.2 Types a la Curry

This approach is based on analysing which (untyped) combinators may be assigned a type.

Consider the theory of untyped combinators and de�ne a set for the types as in the previous

section. A new judgement form is introduced, M : � where M is an (untyped) combinator and

� is a type. The axioms and rules de�ning the provable judgments of this form are:

For any types �; �, it is provable that

K : �! � ! �

For any types �; �;
, it is provable that

S : (�! � !
)! (�! �)! �!

145

For any types �; �,

M : �! � N : �

MN : �

As opposed to the system a la Church where there is a di�erent constant K

�;�

for each di�erent

types �; �, here there is only one constant K which may be assigned many types.

The extensions and the de�nition of abstraction are the ones for the untyped combinators.

It remains to be said when a combinator in an extension with indeterminates x

1

; : : : ; x

n

may

be assigned a type. To do this, we consider again type asignments to the indeterminates and

extend the notion of having a type to having a type in an extension given a type assignment.

The formalization proceeds by de�ning the set TypeOf:

TypeOf-formation

TypeOf(n; ta;M;�) Set [n 2 N; ta 2 TA(n);M 2 Ob(n); � 2 Type

TypeOf-introduction-1

n 2 N ta 2 TA(n) �; � 2 Type

Kt(n; ta; �; �) 2 TypeOf(n; ta;K; �! � ! �)

TypeOf-introduction-2

n 2 N ta 2 TA(n) �; �;
 2 Type

St(n; ta; �; �;
) 2 TypeOf(n; ta;S; (�! � !
)! (�! �)! �!
)

TypeOf-introduction-3

n 2 N ta 2 TA(n) x 2 IS(n) � 2 Type p 2 VarType(n; ta; x; �)

vart(n; ta; x; �; p) 2 TypeOf(n; ta; var(n; x); �)

TypeOf-introduction-4

n 2 N

ta 2 TA(n)

f; a 2 Ob(n)

�; � 2 Type

p 2 TypeOf(n; ta; f; �! �)

q 2 TypeOf(n; ta; a; �)

appt(n; ta; �; �; f; a; p; q) 2 TypeOf(n; ta;App(n; f; a); �)

That abstraction behaved as intended was already shown for the untyped combinators;

it is shown now that it also behaves adequately with respect to the types. We show that

if M is a combinator in an extension with indeterminates x

1

; : : : ; x

n

then, if given a type

assignment �

1

; : : : ; �

n

it is the case that M : �, then it is the case that [x

1

; : : : ; x

n

]M :

�

1

! : : : �

n

! �. This is proved by induction on n based on the proof that if M is a

combinator in an extension with indeterminates x

1

; : : : ; x

n

; x which can be assigned type �

under the type assignment �

1

; : : : ; �

n

; �, then [x]M is assigned type � ! � in the extension

x

1

; : : : ; x

n

under the type assignment �

1

; : : : ; �

n

. This, in turn, is proved by induction on

TypeOf(s(n);Cons(n; ta; �);M; �). This theorem stating the well behaviour of abstraction with

respect to types is a specialization of Curry's strati�cation theorem as presented in [CF58].

146

3.3 Remarks

The typed combinators constitute the Curry-Howard interpretation of minimal logic as pre-

sented in the Hilbert style. The types are interpreted as the propositions (the arrow corresponds

to implication) and the terms as codes for the proofs in the system. Thus the constants K

�;�

and S

�;�;

code the proofs of the axioms given by their types; and application codes a proof

formed using modus monens. The indeterminates in an extension should then be interpreted

as proofs of assumptions which are given by the type assigned to them. The theorem about

the restricted combinatorial completeness can be read under this interpretation as stating the

deductive completeness of the logical system. It states that if there is a proof of proposition

� under the assumption of proposition � then there is a proof of the proposition � � �. The

argument above for the typed combinators may be seen as a proof of this statement by providing

a proof for � � � given the hypothetical proof of �.

There is a much simpler way (suggested by several people) to formalize the typed extensions

when following Church's approach. An extension is charachterized by a list of types; then, a

variable of a given type in such an extension is identi�ed with the proof that that type is in a

given position in the list. This approach was also veri�ed in Alf. The formalization is based in

changing all de�nitions so that the parameter charachterizing the extension is only one, a list

of types.

Acknowledgments

I am most grateful to Bengt Nordstr�om and Jan Smith for their guidance, encouragement and

good disposition. I also owe thanks to Daniel Fridlender and Nora Szasz for many helpful ideas

and the careful reading of this work, and to the Programming Methodology Group for providing

a very stimulating environment.

References

[ACN90] L. Augustsson, T. Coquand, and B. Nordstr�om. A short description of Another Logical

Framework. In Proceedings of the First Workshop on Logical Frameworks, Antibes,

pages 39{42, 1990.

[CF58] H. B. Curry and R. Feys. Combinatory Logic, volume I. North-Holland, 1958.

[Fre84] G. Frege. Function and Concept. In B. McGuinness, editor, Gottlob Frege, Collected

Papers on Mathematics, Logic, and Philosophy, pages 137{156. Basil Blackwell, 1984.

[Kle52] S. C. Kleene. Introduction to Metamathematics. North-Holland, Amsterdam, 1952.

[NPS90] Bengt Nordstr�om, Kent Petersson, and Jan M. Smith. Programming in Martin-L�of's

Type Theory. An Introduction. Oxford University Press, 1990.

[San67] L. E. Sanch��s. Functionals de�ned by Recursion. Notre Dame Journal of Formal

Logic, 8, 1967.

[Sch24] M. Sch�on�nkel.

�

Uber die Bausteine der Mathematischen Logik. Mathematische An-

nalen, 92:305, 1924.

147

[Tai67] W. W. Tait. Intensional interpretation of functionals of �nite type I. Journal of

Symbolic Logic, 32(2):198{212, 1967.

Appendix

This appendix contains the result of editing in Alf the formalizations of the untyped and typed

combinators and the proof of combinatorial completeness for them. In Alf there is a basic type

of sets Set and it is possible to form function types by means of the construction (x : A)B where

B may depend on x. The elements of such types are formed by abstraction, [x]b is a term in

(x : A)B for b : B under the assumption that x : A. These elements may be used by application

f(a).

The implementation in Alf consists of declaring a new constant of type Set for every set

former, or of a function type with values in Set for every family former. Then, corresponding

to each introduction and elimination rule, a constant is declared with its type corresponding to

the type of functions from the types corresponding premisses to the type corresponding to the

conclusion. The de�nitional equalities are introduced as equalities in Alf.

In Martin-L�of's set theory there is the type of sets and then for every set there is type of

elements of that set. Alf provides an implementation of this by letting every constant of type

Set to be a type.

The code for the proof in Alf for both the untyped and typed combinators begins with the

code for the basic sets of Martin-L�of's set theory.

Basic Sets

The set ? for absurdity

? : Set

?

e

: (P : (x : ?)Set)(bott : ?)P (bott)

The set of natural numbers

N : Set

0 : N

s : (N)N

natrec : (P : (N)Set)(b : P (0))(i : (x : N)(P (x))P (s(x)))(n : N)P (n)

natrec(P; b; i; 0) = b

natrec(P; b; i; s(n)) = i(n; natrec(P; b; i; n))

The set < for the order relation between natural numbers

<: (N)(N)Set

OneStep : (n : N)n < s(n)

MoreSteps : (m : N)(n : N)(o : N)(m < n)(n < o)m < o

148

<

e

: (P : (m : N)(n : N)(l : m < n)Set)

(e : (n : N)P (n; s(n);OneStep(n)))

(d : (m : N)(n : N)(o : N)

(lmn : m < n)

(lno : n < o)

(imn : P (m;n; lmn))

(ino : P (n; o; lno))

P (m; o;MoreSteps(m;n; o; lmn; lno)))

(x : N)

(y : N)

(lxy : x < y)

P (x; y; lxy)

<

e

(P; e; d; x; s(x);OneStep(x)) = e(x)

<

e

(P; e; d; x; z;MoreSteps(x; y; z; l

1

; l

2

)) =

d(x; y; z; l

1

; l

2

; <

e

(P; e; d; x; y; l

1

); <

e

(P; e; d; y; z; l

2

))

The set corresponding to disjunction

_ : (Set)(Set)Set

inl : (A : Set)(B : Set)(a : A)A _B

inr : (A : Set)(B : Set)(b : B)A _B

_

e

: (A : Set)

(B : Set)

(P : (A _B)Set)

(el : (a : A)P (inl(A;B; a)))

(er : (b : B)P (inr(A;B; b)))

(p : A _B)

P (p)

_

e

(A;B; P; el; er; inl(A;B; a)) = el(a)

_

e

(A;B; P; el; er; inr(A;B; b)) = er(b)

Note that _ is used as in�x, A _B is an abbreviation for _(A;B). The same is done for

the conjunction and the implication.

The set corresponding to the universal quanti�er

� : (A : Set)(B : (A)Set)Set

� : (A : Set)(B : (A)Set)(f : (x : A)B(x))�(A;B)

�

e

: (A : Set)(B : (A)Set)(f : �(A;B))(a : A)B(a)

�

e

(A;B;�(A;B; f); a) = f(a)

149

The set of functions corresponding to implication

�: (A : Set)(B : Set)Set

� : (A : Set)(B : Set)(f : (A)B)A � B

�

e

: (A : Set)(B : Set)(f : A � B)(a : A)B

�

e

(A;B; �(A;B; f); a) = f(a)

The set for propositional equality

=: (A : Set; a; b : A)Set

id : (A : Set;x : A)x =

A

x

J : (A : Set;C : (x : A)(y : A)(z : x =

A

y)Set; d : (x : A)C(x; x; id(A; x)); a; b : A; p :

a =

A

b)C(a; b; p)

J(A;C; d; a; a; id(A; a)) = d(a)

where we use a =

A

b as an abreviation for = (A; a; b).

The initial segments of natural numbers

IS : (N)Set

put : (n : N)IS(s(n))

inject : (n : N)(i : IS(n))IS(s(n))

IS

e

: (n : N)

(P : (IS(s(n)))Set)

(e : P (put(n)))

(d : (i : IS(n))P (inject(n; i)))

(p : IS(s(n)))

P (p)

IS

e

(n; P; e; d; put(n)) = e

IS

e

(n; P; e; d; inject(n; i)) = d(i)

The proof that an initial segment may be injected into one of greater length:

ISInjection : (m : N)(n : N)(p : m < n _m =

N

n)IS(m) � IS(n)

150

ISInjection = [m;n; p]_

e

(m < n ;

m =

N

n;

[p

1

]IS(m) � IS(n);

[a]<

e

([m;n; a]IS(m) � IS(n);

[n

1

]�(IS(n

1

); IS(s(n

1

)); [h]inject(n

1

; h));

[m

1

;n

1

; o; lmn; lno; hlmn; hlno]

�(IS(m

1

); IS(o);

[h

1

]�

e

(IS(n

1

);

IS(o);

hlno;

�

e

(IS(m

1

); IS(n

1

); hlmn; h

1

)));

m;

n;

a);

[b]J(N; [x; y; p]IS(x) � IS(y); [x

1

]�(IS(x

1

); IS(x

1

); [h]h);m; n; b);

p)

Untyped Combinators

The objects

Ob : (n : N)Set

K : (n : N)Ob(n)

S : (n : N)Ob(n)

var : (n : N; a : IS(n))Ob(n)

app : (n : N; f; a : Ob(n))Ob(n)

Ob

e

: (n : N)

(P : (x : Ob(n))Set)

(e : P (K(n)))

(f : P (S(n)))

(g : (x : IS(n))P (var(n; x)))

(h : (x : Ob(n))(y : Ob(n))(z : P (x))(t : P (y))P (app(n; x; y)))

(o : Ob(n))

P (o)

Ob

e

(n; P; e; f; g; h;K(n)) = e

Ob

e

(n; P; e; f; g; h;S(n)) = f

Ob

e

(n; P; e; f; g; h; var(n; a)) = g(a)

Ob

e

(n; P; e; f; g; h; app(n; a; b)) = h(a; b;Ob

e

(n; P; e; f; g; h; a);Ob

e

(n; P; e; f; g; h; b))

The term that codes the Identity:

I = [n]app(n; app(n;S(n);K(n));K(n)) : (n : N)Ob(n)

151

The formulae

form : (n : N)Set

�: (n : N ; f; g : Ob(n))form(n)

form

e

:(n : N)

(P : (form(n))Set)

(e : (x : Ob(n))(y : Ob(n))P (x �

n

y))

(f : form(n))

P (f)

form

e

(n; P; e; f �

n

g) = e(f; g)

Where we use a �

n

b as an abreviation for � (n; a; b).

The theorems

`: (n : N)(f : form(n))Set

Keq : (n : N)(M;P : Ob(n))`

n

app(n; app(n;K(n);M); P) �

n

M

Seq :(n : N)(M;P;O : Ob(n))

`

n

app(n; app(n; app(n;S(n);M); P); O) �

n

app(n; app(n;M;O); app(n; P;O))

� : (n : N)(M;O;P : Ob(n))(p : `

n

M �

n

O)`

n

app(n;M;P) �

n

app(n;O; P)

� : (n : N)(M;O;P : Ob(n))(p : `

n

M �

n

O)`

n

app(n; P;M) �

n

app(n; P;O)

� : (n : N)(M : Ob(n))`

n

M �

n

M

� : (n : N)(M;O : Ob(n))(p : `

n

M �

n

O)`

n

O �

n

M

� : (n : N)(M;O;P : Ob(n))(p : `

n

M �

n

O)(q : `

n

O �

n

P)`

n

M �

n

P

152

`

e

:(n : N)

(C : (x : form(n))(y : `

n

x)Set)

(ek : (x : Ob(n))(y : Ob(n))C(n �

(

;app(n; app(n;K(n); x); y); x);Keq(n; x; y)))

(es :(x : Ob(n))

(y : Ob(n))

(z : Ob(n))

C(app(n; app(n; app(n;S(n); x); y); z) �

n

app(n; app(n; x; z); app(n; y; z));

Seq(n; x; y; z)))

(emu :(x : Ob(n))

(y : Ob(n))

(z : Ob(n))

(t : `

n

x �

n

y)

(u : C(x �

n

y); t))

C(app(n; x; z) �

n

app(n; y; z); �(n; x; y; z; t)))

(enu :(x : Ob(n))

(y : Ob(n))

(z : Ob(n))

(t : `

n

x �

n

y)

(u : C(x �

n

y; t))

C(app(n; z; x) �

n

app(n; z; y); �(n; x; y; z; t)))

(ero : (x : Ob(n))C(n �

(

;x; x); �(n; x)))

(esigma :(x : Ob(n))

(y : Ob(n))

(z : `

n

x �

n

y)

(t : C(x �

n

y; z))

C(y �

n

x; �(n; x; y; z)))

(etau :(x : Ob(n))

(y : Ob(n))

(z : Ob(n))

(t : `

n

x �

n

y)

(u : `

n

y �

n

z)

(v : C(x �

n

y; t))

(w : C(y �

n

z; u))

C(x �

n

z; �(n; x; y; z; t; u)))

(f : form(n))

(p : `

n

f)

C(f; p)

`

e

(n;C; ek; es; emu; enu; ero; esigma; etau;

app(n; app(n;K(n); x); y) �

n

x;Keq(n; x; y))

= ek(x; y)

`

e

(n;C; ek; es; emu; enu; ero; esigma; etau;

app(n; app(n; app(n;S(n); x); y); z) �

n

app(n; app(n; x; z); app(n; y; z));Seq(n; x; y; z))

= es(x; y; z)

`

e

(n;C; ek; es; emu; enu; ero; esigma; etau; app(n; x; z) �

n

app(n; y; z); �(n; x; y; z; t))

= emu(x; y; z; t;`

e

(n;C; ek; es; emu; enu; ero; esigma; etau; x �

n

y; t))

153

`

e

(n;C; ek; es; emu; enu; ero; esigma; etau; app(n; z; x) �

n

app(n; z; y); �(n; x; y; z; t))

= enu(x; y; z; t;`

e

(n;C; ek; es; emu; enu; ero; esigma; etau; x �

n

y; t))

`

e

(n;C; ek; es; emu; enu; ero; esigma; etau; x �

n

x; �(n; x)) = ero(x)

`

e

(n;C; ek; es; emu; enu; ero; esigma; etau; y �

n

x; �(n; x; y; z))

= esigma(x; y; z;`

e

(n;C; ek; es; emu; enu; ero; esigma; etau; x �

n

y; z))

`

e

(n;C; ek; es; emu; enu; ero; esigma; etau; x �

n

z; �(n; x; y; z; t; u))

= etau(x; y; z; t; u;

`

e

(n;C; ek; es; emu; enu; ero; esigma; etau; x �

n

y; t);

`

e

(n;C; ek; es; emu; enu; ero; esigma; etau; y �

n

z; u))

The following two derived rules were proved:

Ieq : (n : N)(x : Ob(n))`

n

app(n; I(n); x) �

n

x

Ieq = [n; x]�(n;

app(n; I(n); x);

app(n; app(n;K(n); x); app(n;K(n); x));

x;

Seq(n;K(n);K(n); x);

Keq(n; x; app(n;K(n); x)))

�� : (n : N)(f; g; a; b : Ob(n))(`

n

f �

n

g)(`

n

a �

n

b)`

n

app(n; f; a) �

n

app(n; g; b)

�� = [n; f; g; a; b; h; h

1

]�(n;

app(n; f; a);

app(n; g; a);

app(n; g; b);

�(n; f; g; a; h);

�(n; a; b; g; h1))

The injection of a theory into an extension

O : (m : N)(n : N)(p : m < n _m =

N

n)(f : Ob(m))Ob(n)

O = [m;n; p; f]

Ob

e

(m;

[x]Ob(n);

K(n);

S(n);

[x]var(n;�

e

(IS(m); IS(n); ISInjection (m;n; p); x));

[x; y; hx; hy]app(n; hx; hy);

f)

F : (m : N)(n : N)(p : m < n _m =

N

n)(f : form(m))form(n)

F = [m;n; p; f]

form

e

(m; [f]form(n); [x; y]O(m;n; p; x) �

n

O(m;n; p; y); f)

T : (m : N)(n : N)(p : m < n _m =

N

n)(f : form(m))(`

m

f)`

n

F(m;n; p; f)

154

T = [m;n; p; f; h]

`

e

(m;

[f

1

; h]`

n

F(m;n; p; f

1

);

[x; y]Keq(n;O(m;n; p; x);O(m;n; p; y));

[x; y; z]Seq(n;O(m;n; p; x);O(m;n; p; y);O(m;n; p; z));

[x; y; z; t; h

1

]�(n;O(m;n; p; x);O(m;n; p; y);O(m;n; p; z); h

1

);

[x; y; z; t; h

1

]�(n;O(m;n; p; x);O(m;n; p; y);O(m;n; p; z); h

1

);

[x]�(n;O(m;n; p; x));

[x; y; z; h

1

]�(n;O(m;n; p; x);O(m;n; p; y); h

1

);

[x; y; z; t; u; h

1

; h

2

]�(n;O(m;n; p; x);O(m;n; p; y);O(m;n; p; z); h

1

; h

2

);

f;

h)

The de�nition of abstraction of one variable

The de�nition consists of an application of the rule Ob

e

. We �rst show the terms that correspond

to the premises of that rule and then plug them into it to build the de�nition.

KAbstAlg : (n : N)Ob(n)

KAbstAlg = [n]app(n;K(n);K(n))

SAbstAlg : (n : N)Ob(n)

SAbstAlg = [n]app(n;K(n);S(n))

varAbstAlg : (n : N)(x : IS(s(n)))Ob(n)

varAbstAlg = [n; x]IS

e

(n; [x]Ob(n); I(n); [i]app(n;K(n); var(n; i)); x)

appAbstAlg : (n : N)(x : Ob(s(n)))(y : Ob(s(n)))(Ob(n))(Ob(n))Ob(n)

appAbstAlg = [n; x; y; h

1

; h

2

]app(n; app(n;S(n); h

1

); h

2

)

AbstAlg : (n : N)(Ob(s(n)))Ob(n)

AbstAlg = [n; h]Ob

e

(s(n);

[h

1

]Ob(n);

KAbstAlg(n);

SAbstAlg(n);

[x]varAbstAlg(n; x);

[x; y; h

1

; h

2

]appAbstAlg(n; x; y; h

1

; h

2

);

h)

The proof of the combinatorial completeness

We �rst abbreviate the statement with the set CombComp and then prove it using Ob

e

. As in

the de�nition of AbstAlg we prove all the cases corresponding to the premises and then plug

them into the rule. We will not write all the arguments to the injections of a theory into another

one, we will only keep what is injected and the extensions involved. Thus, O(m;n; p; f) will be

abbreviated with O(m;n; f).

155

CombComp : (n : N)(X : Ob(s(n)))Set

CombComp = [n;X]`

s(n)

app(s(n);O(n; s(n);AbstAlg(n;X)); var(s(n); put(n))) �

s(n)

X

KCombComp : (n : N)CombComp(n;K(s(n)))

KCombComp = [n]Keq(s(n);K(s(n)); var(s(n); put(n)))

SCombComp : (n : N)CombComp(n;S(s(n)))

SCombComp = [n]Keq(s(n);S(s(n)); var(s(n); put(n)))

varCombComp : (n : N)(x : IS(s(n)))CombComp(n; var(s(n); x))

varCombComp = [n; x]IS

e

(n;

[h]CombComp(n; var(s(n); h));

Ieq(s(n); var(s(n); put(n)));

[i]Keq(s(n); var(s(n); inject(n; i)); var(s(n); put(n)));

x)

appCombComp : (n : N)

(f : Ob(s(n)))

(g : Ob(s(n)))

(fh : CombComp(n; f))

(gh : CombComp(n; g))

CombComp(n; app(s(n); f; g))

appCombComp = [n; f; g; fh; gh]�(s(n);

app(s(n);

O(n; s(n);AbstAlg(n; app(s(n); f; g)));

var(s(n); put(n)));

app(s(n);

app(s(n);O(n; s(n);AbstAlg(n; f)); var(s(n); put(n)));

app(s(n);O(n; s(n);AbstAlg(n; g)); var(s(n); put(n))));

app(s(n); f; g);

Seq(s(n);

O(n; s(n);AbstAlg(n; f));

O(n; s(n);AbstAlg(n; g));

var(s(n); put(n)));

��(s(n);

app(Succ(n);

O(n; Succ(n);AbstAlg(n; f));

var(s(n); put(n)));

f;

app(s(n);O(n; s(n);AbstAlg(n; g)); var(s(n); put(n)));

g;

fh;

gh))

ObCC : (n : N)(X : Ob(s(n)))CombComp(n;X)

156

ObCC = [n;X]Ob

e

(s(n);

[X]CombComp(n;X);

KCombComp(n);

SCombComp(n);

[x]varCombComp(n; x);

[x; y; h

1

; h

2

]appCombComp(n; x; y; h

1

; h

2

);

X)

The abstraction of all the variables of an extension

EAbstAlg : (n : N)Ob(n) � Ob(0)

EAbstAlg = [n]natrec([n]Ob(n) � Ob(0);

�(Ob(0);Ob(0); [h]h);

[x; h]�(Ob(s(x));Ob(0); [h

1

]�

e

(Ob(x);Ob(0); h;AbstAlg(x; h

1

)));

n)

We need the de�nition of the application to all the indeterminates of an extension

Eapp : (n : N)Ob(0) � Ob(n)

Eapp = [n]natrec([n]Ob(0) � Ob(n);

�(Ob(0);Ob(0); [h]h);

[x; h]�(Ob(0);Ob(s(x)); [h

1

]app(s(x);

O(x; s(x);�

e

(Ob(0);Ob(x); h; h

1

));

var(s(x); put(x))));

n)

the two following terms make the proof more readable:

app

�

: (n : N)(Ob(0))Ob(n)

app

�

= [n; h]�

e

(Ob(0);Ob(n);Eapp(n); h)

AbstAlg

�

: (n : N)(Ob(n))Ob(0)

AbstAlg

�

= [n; h]�

e

(Ob(n);Ob(0);EAbstAlg(n); h)

ObCC

�

: (n : N)�(Ob(n); [X]`

n

app

�

(n;AbstAlg

�

(n;X)) �

n

X)

157

ObCC

�

= [n]natrec([n]�(Ob(n); [X]`

n

app

�

(n;AbstAlg

�

(n;X)) �

n

X);

�(Ob(0); [h

0

]`

0

app

�

(0;AbstAlg

�

(0; h

0

)) �

0

h

0

; [x

1

]�(0; x

1

));

[x; h]�(Ob(s(x));

[h

0

]`

s(x)

app

�

(s(x);AbstAlg

�

(s(x); h

0

)) �

s(x)

h

0

;

[x

1

]�(s(x);

app(s(x);

O(x; s(x); app

�

(x;AbstAlg

�

(s(x); x

1

)));

var(s(x); put(x)));

app(s(x);

O(x; s(x);AbstAlg(x; x

1

));

var(s(x); put(x)));

x

1

;

�(s(x);

O(x; s(x); app

�

(x;AbstAlg

�

(s(x); x

1

)));

O(x; s(x);AbstAlg(x; x

1

));

var(s(x); put(x));

T (x;

s(x);

app

�

(x;AbstAlg

�

(x;AbstAlg(x; x

1

)))

�

x

AbstAlg(x; x

1

);

�

e

(Ob(x);

[X]`

x

app

�

(x;AbstAlg

�

(x;X)) �

x

X;

h;

AbstAlg(x; x

1

))));

ObCC(x; x

1

)));

n)

Typed Combinators

Types

types : Set

atoms : Set

at : (a : atoms)types

!: (� : types)(� : types)types

types

e

: (P : (types)Set)

(atc : (a : atoms)P (at(a)))

(arrc : (� : types)(� : types)(�

h

: P (�))(�

h

: P (�))P (�! �))

(� : types)

P (�)

Type assignments

TA : (N)Set

nil : TA(0)

158

cons : (n : N)(ta : TA(n))(� : types)TA(s(n))

TA

e

: (P : (n : N)(TA(n))Set)

(nilc : P (0; nil))

(consc : (n : N)(ta : TA(n))(� : types)(P (n; ta))P (s(n); cons(n; ta; �)))

(n : N)

(ta : TA(n))

P (n; ta)

The typing of a variable

The sets corresponding to the typed combinators. First the set coding the typing of a variable

in a type assignement:

VarType : (n : N)(ta : TA(n))(x : IS(n))(� : types)Set

PutType : (n : N)(ta : TA(n))(� : types)VarType(s(n); cons(n; ta; �); put(n); �)

InjectType : (n : N)

(ta : TA(n))

(� : types)

(� : types)

(y : IS(n))

(p : VarType(n; ta; y; �))

VarType(s(n); cons(n; ta; �); inject(n; y); �)

VarType

e

: (n : N)

(ta : TA(n))

(P : (x : IS(s(n)))

(� : types)

(� : types)

(p : VarType(s(n); cons(n; ta; �); x; �))

Set)

(e : (� : types)P (put(n); �; �;PutType(n; ta; �)))

(d : (� : types)

(� : types)

(y : IS(n))

(p : VarType(n; ta; y; �))

P (inject(n; y); �; �; InjectType(n; ta; �; �; y; p)))

(x : IS(s(n)))

(� : types)

(� : types)

(p : VarType(s(n); cons(n; ta; �); x; �))

P (x; �; �; p)

VarType

e

(n; ta; P; e; d; put(n); �; �;PutType(n; ta; �)) = e(�)

VarType

e

(n; ta; P; e; d; inject(n; y); �; �; InjectType(n; ta; �; �; y; p)) = d(�; �; y; p)

159

The objects

ob : (n : N)(ta : TA(n))(� : types)Set

K : (n : N)(ta : TA(n))(� : types)(� : types)

ob(n; ta; �! � ! �)

S : (n : N)(ta : TA(n))(� : types)(� : types)(
 : types)

ob(n; ta; (�! � !
)! (�! �)! �!
)

var : (n : N)(ta : TA(n))(� : types)(x : IS(n))(p : VarType(n; ta; x; �))

ob(n; ta; �)

app : (n : N)(ta : TA(n))(� : types)(� : types)(f : ob(n; ta; �! �))(a : ob(n; ta; �))

ob(n; ta; �)

ob

e

: (n : N)

(ta : TA(n))

(P : (� : types)(ob(n; ta; �))Set)

(kc : (� : types)(� : types)P (�! � ! �);K(n; ta; �; �)))

(

sc : (� : types)(� : types)(
 : types)

P ((�! � !
)! (�! �)! �!
;S(n; ta; �; �;
)))

(varc : (� : types)(x : IS(n))(p : VarType(n; ta; x; �))P (�; V ar(n; ta; �; x; p)))

(

appc : (� : types)(� : types)

(f : ob(n; ta; �! �))

(a : ob(n; ta; �))

(fh : P (�! �; f))

(ah : P (�; a))P (�; app(n; ta; �; �; f; a)))

(
 : types)

(t : ob(n; ta;
))

P (
; t)

ob

e

(n; ta; P; kc; sc; varc; appc; � ! � ! �;K(n; ta; �; �)) = kc(�; �)

ob

e

(n; ta; P; kc; sc; varc; appc; (� ! � !
)! (�! �)! �!
;S(n; ta; �; �;
))

= sc(�; �;
)

ob

e

(n; ta; P; kc; sc; varc; appc; �; var(n; ta; �; x; p)) = varc(�; x; p)

ob

e

(n; ta; P; kc; sc; varc; appc; �; app(n; ta; �; �; f; a)) =

appc(�; �; f; a;

ob

e

(n; ta; P; kc; sc; varc; appc; � ! �; f);

ob

e

(n; ta; P; kc; sc; varc; appc; �; a))

We de�ne the identity combinator:

I : (� : types)ob(n; ta; �! �)

160

I = [�]app(n;

ta;

�! �! �;

�! �;

app(n;

ta;

�! �! �! �;

�! �! �! �! �;

S(n; ta; �; � ! �; �);

K(n; ta; �; �! �));

K(n; ta; �; �))

The injection of objects

The Injection of the objects of one theory into an extension with one more variable is realized

by the term:

ObInj : (n : N; ta : TA(n);
 : types; � : types; t : ob(n; ta;
))ob(s(n); cons(n; ta; �);
)

which is de�ned as:

ObInj = [n; ta;
; �; t]ob

e

(n;

ta;

[

1

; t

1

]ob(s(n); cons(n; ta; delta);

1

);

[�

1

; �

1

]K(s(n); cons(n; ta; �); �

1

; �

1

);

[�

1

; �

1

;

1

]S(s(n);

cons(n; ta; �);

�

1

;

�

1

;

1

);

[�

1

; x

1

; p

1

]var(s(n);

cons(n; ta; �);

�

1

;

inject(n; x

1

);

InjectType(n; ta; �

1

; �; x

1

; p

1

));

[�

1

; �

1

; f

1

; a

1

; h; h

1

]app(s(n); cons(n; ta; �); �

1

; �

1

; h; h

1

);

;

t)

The formulae

form : (n : N)(ta : TA(n))(� : types)Set

�: (n : N)(ta : TA(n))(� : types)(t : ob(n; ta; �))(u : ob(n; ta; �))form(n; ta; �)

The theorems

`: (n : N)(ta : TA(n))(� : types)(eq : form(n; ta; �))Set

161

In what follows we will use t �

n;ta

u for � (n; ta; �; t; u) and `

n;ta

eq for ` (n; ta; �; eq) as

abbreviations.

Keq : (n : N)

(ta : TA(n))

(� : types)

(� : types)

(a : ob(n; ta; �))

(b : ob(n; ta; �))

`

n;ta

app(n; ta; �; �; app(n; ta; �; � ! �;K(n; ta; �; �); a); b) �

n;ta

a

Seq : (n : N)

(ta : TA(n))

(� : types)

(� : types)

(
 : types)

(f : ob(n; ta; �! � !
))

(g : ob(n; ta; �! �))

(a : ob(n; ta; �))

`

n;ta

app(app(app(S(n; ta; �; �;
); f); g); a) �

n;ta

app(app(f; a); app(g; a))

where I have removed all the type and context information from the applications to

make it more readable, but it can be restored by looking at the rules of object formation.

� : (n : N)

(ta : TA(n))

(� : types)

(� : types)

(f : ob(n; ta; �! �))

(g : ob(n; ta; �! �))

(a : ob(n; ta; �))

(`

n;ta

f �

n;ta

g)

`

n;ta

app(n; ta; �; �; f; a) �

n;ta

app(n; ta; �; �; g; a)

� : (n : N)

(ta : TA(n))

(� : types)

(� : types)

(a : ob(n; ta; �))

(b : ob(n; ta; �))

(f : ob(n; ta; �! �))

(`

n;ta

a �

n;ta

b)

`

n;ta

app(n; ta; �; �; f; a) �

n;ta

app(n; ta; �; �; f; b)

� : (n : N)(ta : TA(n))(� : types)(t : ob(n; ta; �))`

n;ta

t �

n;ta

t

� : (n : N)(ta : TA(n))(� : types)(t : ob(n; ta; �))(u : ob(n; ta; �))

(`

n;ta

t �

n;ta

u)`

n;ta

u �

n;ta

t

� : (n : N)(ta : TA(n))(� : types)(t : ob(n; ta; �))(u : ob(n; ta; �))(v : ob(n; ta; �))

(`

n;ta

t �

n;ta

u)(`

n;ta

u �

n;ta

v)`

n;ta

t �

n;ta

v

162

The following derived rules were proved, which are then used in the proof of combinatorial

completeness:

�� : (n : N; ta : TA(n);

� : types;� : types;

f : ob(n; ta; �! �);

g : ob(n; ta; �! �);

a : ob(n; ta; �);

b : ob(n; ta; �);

`

n;ta

f �

n;ta

g;

`

n;ta

a �

n;ta

b)

`

n;ta

app(n; ta; �; �; f; a) �

n;ta

app(n; ta; �; �; g; b)

�� = [n; ta; �; �; f; g; a; b; h; h1]� (n;

ta;

�;

app(n; ta; �; �; f; a);

app(n; ta; �; �; g; a);

app(n; ta; �; �; g; b);

�(n; ta; �; �; f; g; a; h);

�(n; ta; �; �; a; b; g; h1))

IdEq : (n : N; ta : TA(n);� : types; a : ob(n; ta; �))

`

n;ta

app(n; ta; �; �; I(n; ta; �); a) �

n;ta

a

IdEq = [n; ta; �; a]� (n;

ta;

�;

app(n; ta; �; �; I(n; ta; �); a);

app(n; ta; �! �; �;

app(n; ta; �; �! �! �;K(n; ta; �; �! �); a);

app(n; ta; �; (! �; �);K(n; ta; �; �); a));

a;

Seq(n; ta; �; �! �; �;K(n; ta; �; � ! �);K(n; ta; �; �); a);

Keq(n; ta; �; �! �; a; app(n; ta; �; �! �;K(n; ta; �; �); a)))

De�nition of Abstraction

The de�nition is by using the elimination rule for objects of a given type in a given extension.

We de�ne separately each of the premisses of this rule and then plug these de�nitions into the

main one. The typings of these terms are:

KAbstAlg : (n : N)(ta : TA(n))(� : types)(
 : types)(� : types)

ob(n; ta; �!
 ! � !
)

SAbstAlg : (n : N)(ta : TA(n))(� : types)(
 : types)(� : types)(� : types)

ob(n; ta; �! (
 ! � ! �)! (
 ! �)!
 ! �)

163

VarAbstAlg : (n : N)(ta : TA(n))(� : types)(� : types)

(x : IS(s(n)))

(p : VarType(s(n); cons(n; ta; �); x; �))

ob(n; ta; �! �)

AppAbstAlg : (n : N)(ta : TA(n))(� : types)(
 : types)(� : types)

(f : ob(s(n); cons(n; ta; �);
 ! �))

(a : ob(s(n); cons(n; ta; �);
))

(fh : ob(n; ta; �!
 ! �))

(ah : ob(n; ta; �!
))

ob(n; ta; �! �)

And the typing of the abstraction algorithm:

AbstAlg : (n : N)(ta : TA(n))(� : types)(� : types)

(X : ob(s(n); cons(n; ta; �); �))

ob(n; ta; �! �)

Now the terms that de�ne these constants:

KAbstAlg = [n; ta; �;
; �]app(n;

ta;

 ! � !
;

�!
 ! � !
;

K(n; ta;
 ! � !
; �);

K(n; ta;
; �))

SAbstAlg = [n; ta; �;
; �; �]app(n;

ta;

(
 ! � ! �)! (
 ! �)!
 ! �;

�! (
 ! � ! �)! (
 ! �)!
 ! �;

K(n; ta; (
 ! � ! �)! (
 ! �)!
 ! �; �);

S(n; ta;
; �; �))

VarAbstAlg = [n; ta; �; �; x; p]VarType

e

(n;

ta;

[x

1

; �

1

; �

2

; p

1

]ob(n; ta; �

2

! �

1

);

[�

1

]I(�

1

)

[�

1

; �

1

; y

1

; p

1

]app(n;

ta;

�

1

;

�

1

! �

1

;

K(n; ta; �

1

; �

1

);

var(n; ta; �

1

; y

1

; p

1

));

x;

�;

�;

p)

164

AppAbstAlg = [n; ta; �;
; �; f; a; fh; ah]app(n;

ta;

�!
;

�! �;

app(n;

ta;

�!
 ! �;

�!
 ! �! �;

S(n; ta; �;
; �);

fh);

ah)

And the term for the abstraction algorithm, which uses the terms above:

AbstAlg = [n; ta; �; �;X]ob

e

(s(n);

cons(n; ta; �);

[�

1

;X

1

]ob(n; ta; �! �

1

);

[�

1

; �

1

]KAbstAlg(n; ta; �; �

1

; �

1

);

[�

1

; �

1

;

1

]SAbstAlg(n; ta; �; �

1

; �

1

;

1

);

[�

1

; x

1

; p

1

]VarAbstAlg(n; ta; �; �

1

; x

1

; p

1

);

[�

1

; �

1

; f

1

; a

1

; h; h

1

]AppAbstAlg(n; ta; �; �

1

; �

1

; f

1

; a

1

; h; h

1

);

�;

X)

The combinatorial completeness

CombComp(n; ta; �; �;X) =

`

s(n);cons(n;ta;�)

app(ObInj(AbstAlg(X));var(�; put(n);PutType(n; ta; �))) �

s(n);cons(n;ta;�)

X

where n : N; ta : TA(n); �; � : types;X : ob(s(n); cons(n; ta; �); �). Some arguments were re-

moved from the app,ObInj and AbstAlg.

As with the de�nition of AbstAlg the term proving this statement is formed with ob

e

, so we will

prove the premisses of the rule before combining them. The terms have the following typing:

KCombComp : (n : N; ta : TA(n);� : types;�

1

: types;�

2

: types)

CombComp(n; ta; �; �

1

! �

2

! �

1

;K(s(n); cons(n; ta; �); �

1

; �

2

))

SCombComp : (n : N; ta : TA(n);� : types;�

1

: types;�

2

: types;�

3

: types)

CombComp(n; ta; �; (�

1

! �

2

! �

3

)! (�

1

! �

2

)! �

1

! �

3

;

S(s(n); cons(n; ta; �); �

1

; �

2

; �

3

))

VarCombComp : (n : N;

ta : TA(n);

� : types;� : types;

x : IS(s(n));

p : VarType(s(n); cons(n; ta; �); x; �))

CombComp(n; ta; �; �; var(s(n); cons(n; ta; �); �; x; p))

165

AppCombComp : (n : N; ta : TA(n);� : types;�

1

: types;�

2

: types;

f : ob(s(n); cons(n; ta; �); �

1

! �

2

);

a : ob(s(n); cons(n; ta; �); �

1

);

fh : CombComp(n; ta; �; �

1

! �

2

; f);

ah : CombComp(n; ta; �; �

1

; a))

CombComp(n; ta; �; �

2

; app(s(n); cons(n; ta; �); �

1

; �

2

; f; a))

The corresponding terms are:

KCombComp = [n; ta; �; �

1

; �

2

]Keq(s(n);

cons(n; ta; �);

�

1

! �

2

! �

1

;

�;

K(s(n); cons(n; ta; �); �

1

; �

2

);

var(s(n); cons(n; ta; �); �; put(n);PutType(n; ta; �)))

SCombComp = [n; ta; �; �

1

; �

2

; �

3

]Keq(s(n);

cons(n; ta; �);

(�

1

! �

2

! �

3

)! (�

1

! �

2

)! �

1

! �

3

;

�;

S(s(n); cons(n; ta; �); �

1

; �

2

; �

3

);

var(s(n); cons(n; ta; �); �; put(n);PutType(n; ta; �)))

VarCombComp =[n; ta; �; �; x; p]

VarType

e

(n;

ta;

[x

1

; �

1

; �

1

; p

1

]CombComp(n; ta; �

1

; �

1

;

var(s(n); cons(n; ta; �

1

); �

1

; x

1

; p

1

));

[�

1

]IdEq(s(n); cons(n; ta; �

1

); �

1

;

var(s(n); cons(n; ta; �

1

); �

1

; put(n);PutType(n; ta; �

1

)));

[�

1

;�

1

; y

1

; p

1

]

Keq(s(n); cons(n; ta; �

1

); �

1

; �

1

;

var(s(n); cons(n; ta; �

1

); �

1

;

inject(n; y); InjectType(n; ta; �

1

; �

1

; y

1

; p

1

));

var(s(n); cons(n; ta; �

1

); �

1

; put(n);PutType(n; ta; �

1

)));

x;

�;

�;

p)

The case for application requires some de�nitions that make it more readable:

fAbst(n; ta; �; �

1

; �

2

; f) : ob(n; ta; �! �

1

! �

2

)

fAbst(n; ta; �; �

1

; �

2

; f) = AbstAlg(n; ta; �; �

1

! �

2

; f)

aAbst(n; ta; �; �; a) : ob(n; ta; �! �)

aAbst(n; ta; �; �; a) = AbstAlg(n; ta; �; �; a)

fAbstInj(n; ta; �; �

1

; �

2

; f) : ob(s(n); cons(n; ta; �); �! �

1

! �

2

)

fAbstInj(n; ta; �; �

1

; �

2

; f) = ObInj(n; ta; �! �

1

! �

2

; �; fAbst(n; ta; �; �

1

; �

2

; f))

166

aAbstInj(n; ta; �; �; a) : ob(s(n); cons(n; ta; �); � ! �)

aAbstInj(n; ta; �; �; a) = ObInj(n; ta; �! �; �; aAbst(n; ta; �; �; a))

AppCombComp = [n; ta; �; �

1

; �

2

; f; a; fh; ah]

�(s(n);cons(n; ta; �); �

2

;

app(s(n); cons(n; ta; �); �; �

2

;

ObInj(n; ta; �! �

2

; �;

AbstAlg(n; ta; �; �

2

;

app(s(n); cons(n; ta; �); �

1

; �

2

; f; a)));

var(s(n); cons(n; ta; �); �; put(n);PutType(n; ta; �)));

app(s(n); cons(n; ta; �); �

1

; �

2

;

app(s(n); cons(n; ta; �); �; �

1

! �

2

;

fAbstInj;

var(s(n); cons(n; ta; �); �; put(n);PutType(n; ta; �)));

app(s(n); cons(n; ta; �); �; �

1

;

aAbstInj;

var(s(n); cons(n; ta; �); �; put(n);PutType(n; ta; �))));

app(s(n); cons(n; ta; �); �

1

; �

2

; f; a);

Seq(s(n); cons(n; ta; �); �; �

1

; �

2

;

fAbstInj;

aAbstInj;

var(s(n); cons(n; ta; �); �; put(n);PutType(n; ta; �)));

��(s(n); cons(n; ta; �); �

1

; �

2

;

app(s(n); cons(n; ta; �); �; �

1

! �

2

;

fAbstInj;

var(s(n); cons(n; ta; �); �; put(n);PutType(n; ta; �)));

f;

app(s(n); cons(n; ta; �); �; �

1

;

aAbstInj;

var(s(n); cons(n; ta; �); �; put(n);PutType(n; ta; �)));

a;

fh;

ah))

ObCC :(n : N)(ta : TA(n))(� : types)(� : types)

(X : ob(s(n); cons(n; ta; �); �))

CombComp(n; ta; �; �;X)

ObCC = [n; ta; �; �;X]ob

e

(s(n);

cons(n; ta; �);

[�

1

;X

1

]CombComp(n; ta; �; �

1

;X

1

);

[�

1

; �

1

]KCombComp(n; ta; �; �

1

; �

1

);

[�

1

; �

1

;

1

]SCombComp(n; ta; �; �

1

; �

1

;

1

);

[�

1

; x; p]VarCombComp(n; ta; �; �

1

; x; p);

[�

1

; �

1

; f; a; h; h

1

]AppCombComp(n; ta; �; �

1

; �

1

; f; a; h; h

1

);

�;

X)

167

Machine Checked Normalization Proofs

for Typed Combinator Calculi

draft

Veronica Gaspes

�

Jan M. Smith

y

University of G�oteborg and Chalmers University of Technology

June 1992

1 Introduction

In this paper we will present formalized normalization proofs of two calculi: simply typed combi-

nators and a combinator formulation of G�odel's T. The proofs are based on Tait's computability

method [10] and are formalized in Martin-L�of's set theory [6, NPS90]. The motivation for do-

ing these formalizations is to obtain machine checked normalization proofs. The proofs in this

paper have been checked using the Alf-system [ACN90]; in fact, given proofs on the level of

formalization presented here, it is a simple and straightforward task to have them veri�ed in

the set theory implementation in Alf.

The �rst theory we will discuss, the simply typed combinators, is chosen because of its

simplicity: we want a machine checked proof which avoids as much as possible syntactical

problems and concentrates on the computability method, which has become a standard tool in

normalization proofs for typed theories.

Tait [10] treated a combinator formulation of G�odel's system T [4]. Although that is a

much more powerful theory than the simply typed combinators, the normalization proof for

G�odel's T is, from the formal point of view, a straightforward extension of that for the simply

typed combinators.

The proofs are done in Martin-L�of's set theory with the possibility of introducing families

of sets by induction. All the inductive de�nitions we use are strictly positive and given the

introduction rules for such an inductively de�ned family, an elimination rule, expressing a

structural induction rule over the set introduced, can be obtained mechanically [2, 3]. However,

the implementation of Martin-L�of's set theory that we have used neither checks the strictly

positiveness of the introduction rules, nor the correctness of the elimination rules.

�

vero@cs.chalmers.se

y

smith@cs.chalmers.se

168

2 The Simply Typed Combinators

The combinator calculus we will use is the one obtained by the Curry-Howard interpration of

positive implicational calculus, formulated in the Hilbert style with the axioms

A � B � A

(A � B � C) � (A � B) � A � C

and with modus ponens as the only derivation rule. So the types will be built up from type

variables and the function arrow:

� X; Y; Z; : : : are types.

� If � and � are types, then �! � is a type.

Corresponding to the axioms, we have, for arbitrary types �, � and
, constants K

�;�

and S

�;�;

with typings

K

�;�

: �! � ! �

S

�;�;

: (�! � !
)! (�! �)! �!

Modus ponens corresponds to application:

M : �! � N : �

MN : �

We have the usual contraction rules, in which we assume that all terms are of appropriate types,

K

�;�

MN � M

S

�;�;

MNO � (MO)(NO)

We will normalize a term by head reduction. So we add the rule

M � N

MO � NO

and de�ne inductively what it means for a term to be normalizable:

� K

�;�

is normalizable.

� S

�;�;

is normalizable.

� K

�;�

M is normalizable provided M is normalizable.

� S

�;�;

M is normalizable provided M is normalizable.

� S

�;�;

MN is normalizable provided M and N are normalizable.

� If M � N and N is normalizable, then M is normalizable.

Intuitively, it is clear that if a term is normalizable then it reduces to a term on normal form,

that is, to a term which does not contain any subterm of the form K

�;�

MN or S

�;�;

MNO.

This can be rigorously proved by de�ning the reduction �

?

as the transitive and symmetric

closure of the relation obtained by adding to the above conversion rules

169

M �

?

N

K

�;�

M �

?

K

�;�

N

M �

?

N

S

�;�;

M �

?

S

�;�;

N

M �

?

N

S

�;�;

MO�

?

S

�;�;

NO

M �

?

N

S

�;�;

OM �

?

S

�;�;

ON

and by de�ning the normal forms inductively by

� K

�;�

is on normal form.

� S

�;�;

is on normal form.

� K

�;�

M is on normal form provided M is on normal form.

� S

�;�;

M is on normal form provided M is on normal form.

� S

�;�;

MN is on normal form provided M and N are on normal form.

The idea of de�ning normalizability directly by induction is due to Martin-L�of [5].

2.1 Normalization Theorem for the Simply Typed Combinators

The proof of the normalization theorem, that is, that every typable term is normalizable, is by

Tait's computability method. The idea of this method is that the normalizability of a term M of

type � is proved by induction on the derivation of M : � using a stronger induction hypothesis,

namely that M is a computable term of type �. For the simply typed combinators the set of

computable terms of a type is inductively de�ned over the types by

� There are no computable terms of a type variable.

� A term M : �! � is computable if

{ M is normalizable and

{ MN is computable of type � provided N is computable of type �.

Note that, from this de�nition it follows that a computable term is normalizable. Hence, the

normalizability theorem is an immediate corollary to the following theorem.

Theorem 1 If M : � then M is computable of type �.

In the proof we need the following lemma, which is easily proved by induction on the type �.

Lemma 1 Let M and N be of type �. If M � N and N is computable of type �, then M is

computable of type �.

The proof of the theorem is by induction on the derivation of M : �. We then have the following

cases.

� K

�;�

: �! � ! �.

Since K

�;�

is a term of an arrow type we have to prove, by the de�nition of computability,

that (i) K

�;�

is normalizable and that (ii) K

�;�

M is computable of type � ! � for all

computable M of type �. (i) follows from the de�nition of being normalizable. For the

proof of (ii) let M be a computable term of type �. We have to show that K

�;�

M is

normalizable and that K

�;�

MN is computable of type � for all computable N of type �.

Since M is computable, M is normalizable, hence, by de�nition, K

�;�

M is normalizable.

Since K

�;�

MN � M and M is assumed to be computable, lemma 1 gives that K

�;�

MN

is computable.

170

� S

�;�;

: (�! � !
)! (�! �)! �!
.

The argument is similar to that for K

�;�

. Let M , N and O be arbitrary computable terms

of type �! � !
, �! � and �, respectively. The de�nition of computability gives that

MO and NO are computable terms of types � !
 and �, respectively. By the de�nition

of computability MO(NO) is computable of type
; since S

�;�;

MNO � MO(NO),

lemma 1 gives that S

�;�;

is computable.

� Application

M : �! � N : �

(MN) : �

By the induction hypothesis M is computable of type � ! � and N is computable of

type �. The de�nition of computability for terms of type � ! � then gives that MN is

computable of type �.

2.2 Formalization of the normalization proof

The formalization of the normalization proof in Martin-L�of's set theory requires representations

of the typed combinators, the relation of contraction of a head redex and of the predicates of

normalizability and computability. All these are de�ned as sets, either by introducing a new

set by an inductive de�nition or, in the case of the computability predicate, by recursion on the

type structure of the combinators, using the universe of Martin-L�of's set theory.

The simply typed combinators are introduced by a set Type for the types and a family Term

of sets over Type such that the elements in Term(�) are the terms of type �. The contraction

of the head redex is expressed by a family of sets OneStepHead(�;M;N) where M and N are

terms of type � such that N is obtained by contracting the head redex of M .

We follow the notation in [NPS90].

2.2.1 The set of types

We �rst declare Type to be a set.

Type-formation

Type : Set

The set Type is inductively generated and there are two introduction rules; one for the atomic

sets, that is, the type variables, and one for the function types. We let the type variables be

indexed by some given set Atom which could, for instance, be the set of natural numbers.

Type-introduction 1

a : Atom

var(a) : Type

Type-introduction 2

� : Type � : Type

�! � : Type

The elimination rule expresses structural induction on the set Type.

171

Type-elimination

P (u) Set [u : Type]

b : P (var(a)) [a : Atom]

i(�; �; I

�

; I

�

) : P (�! �) [�; � : Type; I

�

: P (�); I

�

: P (�)]

� : Type

TypeRec(P; b; i; �) : P (�)

A step in the informal proof by induction on the types will be formalized by an application of

Type-elimination.

2.2.2 The family of sets of terms

Term is declared to be a family of sets over the types.

Term-formation

Term(�) : Set [� : Type]

The family is de�ned inductively by introduction rules which correspond to the formation of

the typed combinators.

Term-introduction 1

�; � : Type

K(�; �) : Term(�! �)

Term-introduction 2

�; �;
 : Type

S(�; �;
) : Term((�! � !
)! (�! �)! �!
)

Term-introduction 3

�; � : Type

M : Term(�! �)

N : Term(�)

App(�; �;M;N) : Term(�)

In the sequel we will often omit the type arguments in the constructor App since they can be

obtained from the types of the other arguments. The elimination rule completes the de�nition

by expressing structural induction on the family Term.

Term-elimination

P (u; v) : Set [u : Type; v : Term(u)]

k(x; y) : P (x! y ! z;K(x; y)) [x; y : Type]

s(x; y; z) : P ((x! y ! z)! (x! y)! x! z;S(x; y; z)) [x; y; z : Type]

ap(x; y; u; v; I

u

; I

v

) : P (y;App(u; v))

2

6

6

6

6

6

4

x; y : Type;

u : Term(x! y);

v : Term(x)

I

u

: P (x! y; u);

I

v

: P (x; v)

3

7

7

7

7

7

5

� : Type

M : Term(�)

TermRec(P; k; s; ap; �;M) : P (�;M)

When informally a statement is proved by induction on the derivation of t : �, the formal

proof is by an application of Term-elimination.

172

2.2.3 The family of sets expressing head contraction

OneStepHead is declared to be a family of sets over types and terms.

OneStepHead-formation

OneStepHead(�;M;N) : Set [� : Type; M;N : Term(�)]

The set OneStepHead(�;M;N) expresses that N results from contracting the head redex of

M ; thus it is de�ned by the following introduction rules.

OneStepHead-introduction 1

�; � : Type M : Term(�) M : Term(�)

kk(�; �;M;N) : OneStepHead(�;App(App(K(�; �);M); N);M)

OneStepHead-introduction 2

�; �;
 : Type M : Term(�! � !
) N : Term(�! �) O : Term(�)

ss(�; �;M;N;O) :

OneStepHead(
;App(App(App(S(�; �;
);M); N); O);App(App(M;O);App(N;O)))

OneStepHead-introduction 3

�; � : Type M;N : Term(�! �) O : Term(�) p : OneStepHead(�! �;M;N)

�(�; �;M;N;O; p) : OneStepHead(�;App(M;O);App(N;O))

The elimination rule for this inductive de�nition of OneStepHead will not be used in the

normalization proof and we refrain from formulating it.

2.2.4 The family of sets formalizing normalizability

The family Norm is introduced for the proofs that a term of a given type is normalizable.

Norm-formation

Norm(�;M) : Set [� : Type; M : Term(�)]

The introduction rules correspond to the clauses in the inductive de�nition of the set of

normalizable terms of a given type.

Norm-introduction 1

�; � : Type

kn(�; �) : Norm(�! � ! �;K(�; �))

Norm-introduction 2

�; �;
 : Type

sn(�; �;
) : Norm((�! � !
)! (�! �)! �!
;S(�; �;
))

173

Norm-introduction 3

�; � : Type M : Term(�) M

n

: Norm(�;M)

kan(�; �;M;M

n

) : Norm(� ! �;App(K;M))

Norm-introduction 4

�; �;
 : Type M : Term(�! � !
) M

n

: Norm(�! � !
;M)

sfn(�; �;
;M;M

n

) : Norm((�! �)! �!
;App(S;M))

Norm-introduction 5

�; �;
 : Type

M : Term(�! � !
)

N : Term(�! �)

M

n

: Norm(�! � !
;M)

N

n

: Norm(�! �;N)

sfgn(�; �;
;M;N;M

n

; N

n

) : Norm(�!
;App(App(S;M); N))

Norm-introduction 6

� : Type M;N : Term(�) p : OneStepHead(�;M;N) N

n

: Norm(�;N)

mrn(�;M;N; p;N

n

) : Norm(�;M)

The elimination rule for Norm will not be used in the proof.

2.2.5 The family of sets for the computability predicate

The computability predicate

Comp(�;M) : Set [� : Type;M : Term(�)]

should satisfy the equations

Comp(var(a);M) = ? [a : Atom; M : Term(var(a))]

Comp(�!�;M) = Norm(�!�;M) ^ (�N : Term(�))Comp(�;N) � Comp(�;App(M;N))

The de�nition of Comp is by recursion on the type structure either by using a universe or

directly by set valued recursion [9]. Using the notation in [NPS90] the de�nition of Comp using

a universe would be

Comp(�) = Set(

\

Comp(�))

where

\

Comp(�) = TypeRec([v]Term(v))U; [at]BaseCase(at); [
; �; I

; I

�

]ArrowCase(
; �; I

; I

�

))

BaseCase(at) � �M:

b

?

ArrowCase(
; �; I

; I

�

) � �M:

[

Norm(M)

b

^(

b

�N 2

[

Term(
))(I

(N)c)I

�

(App(M;N)))

The de�nition of the computability predicate using the approach in [9] would be the same except

that no coding would be involved. In fact, in the implementation of the proof in Alf, we wrote

the two de�ning equations for Comp directly, using pattern matching; in fact this approach

makes the equations for the computability predicate de�nitional.

174

2.2.6 The formal normalization proof

The proposition expressing that every typable term is normalizable can now be formulated in

Martin-L�of's set theory by

(�� : Type)(�t : Term(�))Norm(�; t)

The formalization of the proof of the normalization theorem consists in deriving an element in

this set. Such an element is built up by applying a proof of

(�� : Type)(�t : Term(�))(Comp(�; t) � Norm(�; t))

to a proof of

(�� : Type)(�t : Term(�))Comp(�; t)

The �rst of these statements, which in the informal presentation of the proof was assumed

to be a direct consequence of the de�nition of computability, requires an explicit proof in the

formalization; the proof is by induction on the type �, i.e. by Type-elimination.

The second statement is proved by induction on the derivation of t : Term(�), i.e. by

Term-elimination, using the lemmata

(�� : Type)(�t; u : Term(�))OneStepHead(�; t; u) � Comp(�; u) � Comp(�; t)

and

(��; � : Type)(�f 2 Term(�! �))(�a : Term(�))

Comp(�! �; f) � Comp(�; a) � Comp(�;App(f; a))

The �rst lemma was proved by induction on � and the second is an immediate consequence of

the de�nition of Comp(�! �; f).

Instead of presenting the proofs in the tree like fashion that results from the natural deduc-

tion style used above when formulating the inference rules, we will express these rules in the

logical framework as functions. For example, the introduction rule for normalizability

� : Type M;N : Term(�) p : OneStepHead(�;M;N) N

n

: Norm(�;N)

mrn(�;M;N; p;N

n

) : Norm(�;M)

is expressed by the function

mrn : (� : Type)(M;N : Term(�))(p : OneStepHead(�;M;N))(N

n

: Norm(�;N))Norm(�;M)

We refer to [NPS90] for expressing rules in the logical framework.

Formally, the normalization theorem is proved by the term

AllNorm : (� : Type)(t : Term(�))Norm(�; t)

AllNorm(�; t) = apply(Comp(�; t);

Norm(�; t);

apply(Term(�);

[a]Comp(�; a) � Norm(�; a);

lemma(�);

t);

AllComp(�; t))

175

Removing all set parameters, this term becomes

AllNorm(�; t) = apply(apply(lemma(�); t);AllComp(�; t))

We will often use this convention of hiding the set parameters of the constants.

The term AllComp proves that every term is computable (by induction on the de�nition

of being a term in a given type) and the term lemma proves that every computable term is

normalizable (by induction on the types):

lemma : (� : Type)�(Term(�); [t]Comp(�; t) � Norm(�; t))

lemma(�) = TypeRec([a]�(Term(a); [t]Comp(a; t) � Norm(a; t));

[at]�([x]�([cx]?

e

([v]Norm(var(at); x); cx)));

[�;
; h

�

; h

]�([f]�([cf]fst(cf)));

�)

AllComp : (� : Type)(t : Term(�))Comp(�; t)

AllComp(�; t) = TermRec([
; u]Comp(
; u);

[�

1

; �

2

]Kcomp(�

1

; �

2

);

[�

1

; �

2

; �

3

]Scomp(�

1

; �

2

; �

3

);

[�

1

; �

2

; f; b; h

f

; h

b

]Appcomp(�

1

; �

2

; f; b; h

f

; h

b

);

�;

t)

The de�nition of AllComp requires the de�nitions of Kcomp, Scomp and Appcomp which, re-

spectively, prove that K, S, and App(f; a) are computable. We will here only give the de�nition

of Appcomp; the de�nitions of the other two are somewhat longer, re
ecting that the proofs of

the computability of K and S are slightly more complicated.

Appcomp : (�; � : Type)

(f : Term(�! �))

(a : Term(�))

(cf : Comp(�! �; f))

(ca : Comp(�; a))

Comp(�;App(�; �; f; a))

Appcomp = [�; �; f; a; cf; ca]apply(apply(snd(cf); a); ca)

2.2.7 An example

As an illustration of the computational content of the formal proof, we will show the proof

object for the normalizability of the combinator I

�!�

(I

�!�

I

�

), where I

�

is the identity function

on the type � and � is an atomic type. Omitting the type information in the combinators K

�;�

and S

�;�;

the identity function is de�ned by

I

�

= SKK

and the head reduction to normal form of I

�!�

(I

�!�

I

�

) is

SKK((SKK)(SKK)) � (K((SKK)(SKK)))(K((SKK)(SKK))) �

(SKK)(SKK) � (K(SKK))(K(SKK)) � SKK = I

�

176

This reduction sequence will appear in the proof term.

For the formal proof we need an element i : Atom and the de�ne � to be var(i). The

combinators I

�

, I

�!�

and I

�!�

(I

�!�

I

�

) are introduced by the explicit de�nitions

I

�

: Term(�! �)

I

�

= App(App(S(�; �! �; �);K(�; �! �));K(�; �)),

I

�!�

: Term((�! �)! �! �)

I

�!�

= App(App(S(�! �; (�! �)! �! �; �! �);

K(�! �; (�! �)! �! �));

K(�! �; �! �))

and

I

�!�

(I

�!�

I

�

) : Term(�! �)

I

�!�

(I

�!�

I

�

) = App(�! �; �! �; I

�!�

; I

�!�

I

�

)

respectively. Both in these de�nitions and in the proof term below many type arguments of the

constants have been removed for the sake of readability.

The proof of the normalizability of I

�!�

(I

�!�

I

�

) is by showing that the terms to which

I

�!�

(I

�!�

I

�

) head reduces are normalizable; hence, the proof consists of the series of terms in

the reduction together with proofs of these reductions and proofs that the corresponding terms

are normalizable.

Substituting �! � and I

�!�

(I

�!�

I

�

) for � and t, respectively, in AllNorm(�; t) and unfolding

de�nitions, we obtain

AllNorm(�! �; I

�!�

I

�!�

I

�

) : Norm(�! �; I

�!�

I

�!�

I

�

)

AllNorm(�! �; I

�!�

I

�!�

I

�

) =

mrn(I

�!�

I

�!�

I

�

;

App(App(K(�! �; (�! �)! �! �); I

�!�

I

�

);App(K(�! �; �! �); I

�!�

I

�

));

ss(K(�! �; (�! �)! �! �);K(�! �; �! �); I

�!�

I

�

);

mrn(App(App(K(�! �; (�! �)! �! �); I

�!�

I

�

);App(K(�! �; �! �); I

�!�

I

�

));

I

�!�

I

�

;

kk(I

�!�

I

�

;App(K(�! �; �! �); I

�!�

I

�

));

mrn(I

�!�

I

�

;

App(App(K(�! �; (�! �)! �! �); I

�

);App(K(�! �; �! �); I

�

));

ss(K(�! �; (�! �)! �! �);K(�! �; �! �); I

�

);

mrn(App(App(K(�! �; (�! �)! �! �); I

�

);App(K(�! �; �! �); I

�

));

I

�

;

kk(I

�

;App(K(�! �; �! �); I

�

));

sfgn(K(�; �! �);K(�; �); kn; kn)))))

177

2.2.8 Extracting the normal form from the proof

In the above example, we have seen that when the proof of the normalizability theorem is applied

on a combinator, the normal form appears in the proof. We will now de�ne a function

extraction : (� : Type)(t : Term(�))(p : Norm(�; t))Term(�)

that from a proof p of the normalizability of a given combinator extracts the the normal form of

the combinator. The function will be de�ned by induction on the normalizability of the term.

The cases that correspond to the de�nition by elimination of the set Norm applied to p are:

extraction(�! � ! �;K(�; �); kn(�; �)) = K(�; �)

extraction((�! � !
)! (�! �)! �!
;S(�; �;
); sn(�; �;
)) = S(�; �;
)

extraction(� ! �;App(K(�; �); a); kan(�; �; a; p)) =

App(K(�; �); extraction(�; a; p))

extraction((�! �)! �!
;

App(S(�; �;
); f);

sfn(�; �;
; f; p))

=

App(S(�; �;
); extraction(�! � !
; f; p))

extraction(�!
;

App(App(S(�; �;
); f); g);

sfgn(�; �;
; f; g; p; q))

=

App(App(S(�; �;
); extraction(�! � !
; f; p)); extraction(�! �; g; q))

extraction(�; t;mrn(�; t; u; p; q)) = extraction(�; u; q)

This extraction function may then be applied to the proof AllNorm of the normalizability of

all terms, thus we obtain an algorithm that computes the normal form of a term:

nf = [�; t]extraction(�; t;AllNorm(�; t)) : (� : Type)(t : Term(�))Term(�)

3 G�odel's System T

A combinator formulation G�odel's system T of computable functionals [8, 10] is obtained from

the theory of the simply type combinators by replacing the type variables by the set N of natural

numbers. The terms are then obtained by deleting the type variables and adding

0 : N

s : N!N

R

�

: �!(�!N!�)!N!�

The contraction relation is extended by the rules of the recursion operator:

R

�

MN 0 � M

R

�

MN (sT) � N (R

�

MNT)T

178

O � P

R

�

MNO � R

�

MNP

To the de�nition of the set of normalizable terms we add the following clauses:

� 0 is normalizable.

� s is normalizable.

� sM is normalizable provided M is normalizable.

� R

�

is normalizable.

� R

�

M is normalizable provided M is normalizable.

� R

�

MN is normalizable provided M and N are normalizable.

3.1 Normalization Theorem for G�odel's System T

To obtain a proof of the normalizability theorem for G�odel's T from the proof for the simply

typed combinators, we have to change the de�nition of the computability predicate in the

atomic case. For the simply typed combinators the atomic case was empty; now it is the set of

computable natural numbers:

� 0 is computable of type N.

� sM is computable of type N provided M is computable of type N.

� If M � N and N is computable of type N, then M is computable.

Formally, the set of computable natural numbers is introduced by inductively de�ned family

CompN:

CompN Formation

CompN(M) Set[M 2 Term(N)]

CompN Introduction

zComp2 CompN(0)

M : Term(N) p : CompN(M)

sComp(M) : CompN(s(M))

M;N : Term(N) p : OneStepHead(M;N;N) q : CompN(N)

mrComp(M;N; p; q) : CompN(M)

179

CompN Elimination

P (u; v) : Set [u : Term(N); v : CompN(u)]

zz : P (0; zComp)

ss(x; y; z) : P (s(x); sComp(x)) [x : Term(N); y : CompN(x); z : P (x; y)]

mrc(x; y; u; v; I

y

) : P (x;mrComp(x; y; u; v))

2

6

6

6

4

x; y : Term(N);

u : OneStepHead(x; y;N);

v : CompN(y)

I

y

: P (y; v)

3

7

7

7

5

M : Term(N)

cn : CompN(n)

CompNRec(P; zz; ss;mrc;M; cm) : P (n; cm)

Similarly to the case of the simply typed combinators, the computability predicate is de�ned

so that it satis�es the equations

Comp(N;M) = CompN(M) [M : Term(N)]

Comp(�! �;M) =

Norm(�! �;M) ^ (�N : Term(�))Comp(�;N) � Comp(�;App(M;N))

To the proof that every simply typed combinator is computable, we must add the cases:

� 02 N, which is computable outright.

� s2 N!N. Since s is in an arrow type, we must show that (i) s is normalizable, which

follows immediately from the de�nition of normalizability, and that (ii) sM is computable

of type N for an arbitrary computable M of type N, which follows from one of the clauses

de�ning computability of type N.

� R

�

: �!(�!N!�)!N!�. Since R

�

is in a function type we must be show that (i) R

�

is

normalizable, which it is by de�nition of normalizability, and that (ii) R

�

M is computable

of type (�!N!�)!N!� for arbitrary computable M of type �. The proof of (ii) is by

taking an arbitrary M computable of type � and showing that (iii) R

�

M is normalizable,

which follows from the computability of M , and (iv) R

�

MN is computable in N!� for

arbitrary N computable of type �!N!�. Again, the proof is by taking an arbitrary

computable N of type �!N!� and show that (v) R

�

MN is normalizable, which it is

because both M and N are computable, and (vi) R

�

MNO is computable of type � for

arbitrary O computable of type N. The proof of (vi) is by induction on the computability

of type N of O; thus it has to be proved that

{ R

�

MN0 is computable of type �, which follows from R

�

MN0 � M .

{ R

�

MN(sP) is computable of type �, which is a consequence of

R

�

MN(sP) � N(R

�

MNP)P

, where the computability of N(R

�

MNP)P follows from the induction hypothesis

and the computability of N and P .

{ R

�

MNP is computable of type � where P � Q and Q is computable of type

N. The induction hypothesis gives that R

�

MNQ is computable of type �; hence

R

�

MNP � R

�

MNQ gives the result.

180

Let R be the formal constant expressing the recursion operator; let Rn, Ran and Rain be the

constants introduced in the inductive de�nition of normalizability; let Rzr, Rsr and Rtn be the

constants introduced in the inductive de�nition of one step head reduction. The following is

the formal proof that R is computable:

RComp : (� : Type)Comp(�! (�! N! �)! N! �;R(�))

RComp(�) =

pair(Rn(�);

�([a]�([ca]pair(Ran(�; a; lemma

1

(�; a; ca));

�([i]�([ci]pair(Rain(�; a; i; lemma

1

(�; a; ca); lemma

1

(�!N!�; i; ci));

�([n]�([cn]RComp

0

)

where RComp

0

, which is introduced only for the sake of readability, is the term which realizes

the induction on cn, i.e. the computability of n:

CompNRec([t; ct]Comp(�;App(App(App(R(�); a); i); t));

lemma

2

(�;App(App(App(R(�); a); i); 0); a;Rzr(�; a; i); ca);

[t; ct; h]lemma

2

(�;

App(App(App(R(�); a); i);App(s; t));

App(App(i;App(App(App(R(�); a); i); t)); t);

Rsr(�; a; i; t);

lemma

3

(�; a; i; t; ci; ct; h));

[t; u;mr; ct; h]lemma

2

(�;

App(App(App(R(�); a); i); u);

App(App(App(R(�); a); i); t);

Rtn(�; a; i; t; u;mr);

h);

n;

cn))))))))))

In the proof, the terms lemma

1

; lemma

2

; lemma

3

are proofs, which are the same as for the simply

typed calculus, of

lemma

1

: (� : Type)(a : Term(�))(ca : Comp(�; a))Norm(�; a)

lemma

2

:(� : Type)

(t : Term(�))

(u : Term(�))

(OneStepHead(�; t; u))

(Comp(�; u))

Comp(�; t)

lemma

3

:(� : Type)

(a : Term(�))

(i : Term(�! N! �))

(t : Term(N))

(ci : Comp(�! N! �; i))

(ct : Comp(N; t))

(h : Comp(�;App(App(App(R(�); a); i); t)))

Comp(�;App(App(i;App(App(App(R(�); a); i); t)); t))

181

References

[1] L. Augustsson, T. Coquand, and B. Nordstr�om. A short description of Another Logical

Framework. In Proceedings of the First Workshop on Logical Frameworks, Antibes, pages

39{42, 1990.

[2] Thierry Coquand and Christine Paulin. Inductively de�ned types. In Proceedings of

COLOG-88, number 417 in Lecture Notes in Computer Science. Springer-Verlag, 1990.

[3] Peter Dybjer. Inductive sets and families in Martin-L�of's type theory and their set-theoretic

semantics. In G. Huet and G. Plotkin, editors, Informal Proceedings of the First Workshop

on Logical Frameworks, pages 213{230. Esprit Basic Research Action 3245, May 1990. To

appear in G. Huet and G. Plotkin, editors, Logical Frameworks.

[4] Kurt G�odel.

�

Uber eine bisher noch nicht benutze erweitrung des �niten standpunktes.

Dialectica, 12, 1958.

[5] Per Martin-L�of. Hauptsatz for the Intuitionistic Theory of Iterated Inductive De�nitions.

In J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages

179{216. North-Holland Publishing Company, 1971.

[6] Per Martin-L�of. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[7] Bengt Nordstr�om, Kent Petersson, and Jan M. Smith. Programming in Martin-L�of's Type

Theory. An Introduction. Oxford University Press, 1990.

[8] L. Sanchis. Functionals de�ned by recursion. Notre Dame Journal of Formal Logic, (8):161{

174, 1967.

[9] Jan M. Smith. Propositional Functions and Families of Types. Notre Dame Journal of

Formal Logic, 30(3), 1989.

[10] W. W. Tait. Intensional interpretation of functionals of �nite type I. Journal of Symbolic

Logic, 32(2):198{212, 1967.

182

Inductive and Coinductive types with Iteration and Recursion

�

Herman Geuvers

y

,

Faculty of Mathematics and Computer Science,

University of Nijmegen,

Toernooiveld 1,

6525 ED Nijmegen,

The Netherlands

July 1992

Abstract

We study (extensions of) simply and polymorphically typed lambda calculus from a

point of view of how iterative and recursive functions on inductive types are represented.

The inductive types can usually be understood as initial algebras in a certain category and

then recursion can be de�ned in terms of iteration. However, in the syntax we often have

only weak initiality, which makes the de�nition of recursion in terms of iteration ine�cient

or just impossible. We propose a categorical notion of (primitive) recursion which can easily

be added as computation rule to a typed lambda calculus and gives us a clear view on

what the dual of recursion, corecursion, on coinductive types is. (The same notion has,

independently, been proposed by [Mendler 1991].) We look at how these syntactic notions

work out in the simply typed lambda calculus and the polymorphic lambda calculus. It

will turn out that in the syntax, recursion can be de�ned in terms of corecursion and vice

versa using polymorphism: Polymorphic lambda calculus with a scheme for either recursion

or corecursion su�ces to be able to de�ne the other. We compare our syntax for recursion

and corecursion with that of Mendler ([Mendler 1987]) and use the latter to obtain meta

properties as con
uence and normalization.

1 Introduction

In this paper we want to look at formalizations of inductive and coinductive types in di�er-

ent typed lambda calculi, mainly extensions of the polymorphic lambda calculus. It is well-

known that in polymorphic lambda calculus, many inductive data types can be de�ned (see

e.g.[B�ohm and Berarducci 1985] and [Girard et al. 1989]). In this paper we want to look at how

functions on inductive types can be represented. Therefore, two ways of using the inductive

building up of a type to de�ne functions on that type are being distinguished, the iterative

way and the recursive way. An iterative function is de�ned by induction on the building up of

the type by de�ning the function value in terms of the previous values. A recursive function

is also de�ned by induction, but now by de�ning the function value in terms of the previous

values and the previous inputs. For functions on the natural numbers that is h : Nat ! A,

with h(0) = c; h(n + 1) = f(h(n)) (for c : A; f : A ! A) is iterative and h : Nat ! A, with

�

Extended notes of a talk given at the BRA-LF meeting in Edinburgh, May 1991

y

herman@cs.kun.nl

183

h(0) = c; h(n + 1) = g(h(n); n) (for c : A; g : A � Nat ! A) is recursive. If one has pairing,

the recursive functions can be de�ned using just iteration, which was essentially already shown

by [Kleene 1936]. But if we work in a typed lambda calculus where pairing is not surjective,

this translation of recursion in terms of iteration becomes ine�cient and sometimes impossible.

Moreover, if the calculus also incorporates some predicate logic, one would like to use the in-

ductivity in doing proofs, which is not always straightforward (or just impossible.) We shall not

go into the latter topic here; there is still a lot of work to be done in relating the work presented

here to systems like AF2 by Krivine and Parigot (connections may be found in [Parigot 1992])

and Coq ([Dowek e.a. 1991].)

This asks for an explicit scheme for recursion in typed lambda calculus, which yields for,

say, the natural numbers the scheme of G�odels T. To see how this can be done in general

for inductive types, we are going to de�ne a categorical notion of recursion (just like `initial

algebra' categorically represents the notion of iteration). One of the trade-o�s is that we can

dualize all this to get a notion of corecursion on coinductive types. These categorical notions of

recursion and corecursion have independently been found by Mendler (see [Mendler 1991]) who

treats these constructions in Martin-L�of type theory with predicative universes. What we de�ne

as (co)recursive (co)algebras are what Mendler calls `(co)algebras that admit simple primitive

recursion'. We shall always use the term `recursion', because, although the function-de�nition-

scheme has a strong
avour of primitive recursion, one can de�ne many more functions in

polymorphic lambda calculus then just the primitive recursive ones. Coinductive types were

�rst described in [Hagino 1987a] and [Hagino 1987b], with only a scheme for coiteration and

without corecursion. Here we give a quite straightforward extension of simply typed lambda

calculus with recursive and corecursive types.

A very surprising result is that in a polymorphic framework, if we have a notion of recursive

types which re
ects our notion of recursive algebra, then we can de�ne corecursive types that

correspond to corecursive coalgebras. By duality, this also works the other way around. This

result will be given here syntactically: We de�ne a polymorphic lambda calculus with recursive

and corecursive types (that straightforwardly represents the categorical notions of recursive

algebra and corecursive coalgebra) and show that the scheme for recursive types can be de�ned

from the scheme for corecursive types and vice versa. We also look at a system of recursive and

corecursive types de�ned by [Mendler 1987] and show that with either the scheme for recursive

types or the scheme for corecursive types, there is a recursive �-algebra and a corecursive �-

coalgebra in the syntax for every syntactic functor � (where syntactic functors are positive type

schemes.)

2 The categorical perspective

As said, we shall get our intuitions about inductive and coinductive types from the �eld of cate-

gory theory. The main notions in category theory related to this issue come from [Lambek 1968].

De�nition 2.1 Let C be a category, T a functor from C to C.

1. A T -algebra in C is a pair (A; f), with A an object and f : TA! A.

184

2. If (A; f) and (B; g) are T -algebra's, a morphism from (A; f) to (B; g) is a morphism

h : A! B such that the following diagram commutes.

TA

f

> A

Th

_

=

_

h

TB

g

> B

3. A T -algebra (A; f) is initial if it is initial in the category of T -algebras, i.e. for every

T -algebra (B; g) there's a unique h which makes the above diagram commute.

In a category with products, coproducts and terminal object, the initial algebra of the

functor TX = 1 +X is the natural numbers object, for which we write (Nat;

�

Z;S

�

). The initial

algebra of TX = 1+(A�X) is the object of �nite lists over A, (List

A

;

�

Nil;Cons

�

). In this paper

our pet-example of an initial algebra will be (Nat;

�

Z;S

�

), which will be used to illustrate the

properties we are interested in. First take a look at how the iterative and recursive functions

can be de�ned on Nat. (The example immediately generalizes to arbitrary initial algebras.)

Example 2.2 1. For g : 1+B ! B we write g

1

for g� in

1

: 1! B and g

2

for g� in

2

: B ! B.

The iteratively de�ned morphism from g

1

; g

2

, Elimg

1

g

2

, is de�ned as the unique morphism

h which makes the diagram commute, i.e. h � Z = g

1

and h � S = g

2

� h.

2. For g

1

: 1 ! B, g

2

: B � Nat ! B, the recursively de�ned morphism from g

1

and g

2

is

constructed as follows.

There exists a unique h which makes the diagram

1 + Nat

�

Z;S

�

> Nat

id + h

_

=

_

h

1 + (B � Nat)

h

�

g

1

; g

2

�

;

�

Z;S � �

2

�

i

> B � Nat

commute. That is h �

�

Z;S

�

= h

�

g

1

; g

2

�

;

�

Z;S � �

2

�

i � id + h. If we write h

1

= �

1

� h and

h

2

= �

2

� h we have the equalities

h

1

� Z = g

1

;

h

1

� S = g

2

� h;

h

2

� Z = Z;

h

2

� S = S � h

2

:

Now h

2

= id

Nat

by uniqueness and also h = hh

1

; h

2

i, so

h

1

� Z = g

1

;

h

1

� S = g

2

� hh

1

; idi:

185

So h

1

satis�es the recursion equalities and we de�ne

Recg

1

g

2

:= h

1

:

De�nition 2.3 Let C be a category, T a functor from C to C.

1. A T -coalgebra in C is a pair (A; f), with A an object and f : A! TA.

2. If (A; f) and (B; g) are T -coalgebras, a morphism from (B; g) to (A; f) is a morphism

h : B ! A such that the following diagram commutes.

B

g

> TB

h

_

=

_

Th

A

f

> TA

3. A T -coalgebra (A; f) is terminal if it is terminal in the category of T -coalgebras, i.e. for

every coalgebra (B; g) there's a unique h which makes the above diagram commute.

Our pet example for terminal coalgebras is the one for TX = Nat�X, the object of in�nite

lists of natural numbers, for which we write (Stream; hH;Ti). We shall dualize the notions of

iterative and recursive function to get coiterative and corecursive functions to Stream. (Again

this example easily generalizes to the case for arbitrary terminal coalgebras.)

Example 2.4 1. For g : B ! Nat�B, write g

1

for �

1

�g : B ! Nat and g

2

for �

2

�g : B ! B.

The coiteratively de�ned morphism from g

1

and g

2

, Introg

1

g

2

: B ! Stream is the (unique)

morphism h for which the diagram commutes. That is, H � h = g

1

and T � h = h � g

2

.

If j is a morphism from Nat to Nat, one can de�ne the morphism from Stream to Stream

which applies f to every point in the stream as Intro(j � H)T . Note that it is not so

straightforward to de�ne (coiteratively) a morphism which replaces the head of a stream

by, say, zero. This, however, can easily be done using corecursion.

2. For g

1

: B ! Nat, g

2

: B ! B + Stream, the corecursively de�ned morphism from g

1

and g

2

, Corecg

1

g

2

is de�ned by h � in

1

, where h is the (unique) morphism which makes the

diagram

B + Stream

�

hg

1

; g

2

i; hH; in

2

� Ti

�

> Nat� (B + Stream)

h

_

=

_

id� h

Stream

hH;Ti

> Nat� Stream

commute. If we write h

1

= h � in

1

; h

2

= h � in

2

, then we have for h the following equations

H � h

2

= H;

T � h

2

= h

2

� T;

H � h

1

= g

1

;

T � h

1

= h � g

2

:

186

Now h

2

= id by uniqueness and also h =

�

h

1

; h

2

�

, so

H � h

1

= g

1

;

T � h

1

=

�

h

1

; id

�

� g

2

:

These are the equations for corecursion; if g

1

: B ! Nat and g

2

: B ! B + Stream, then

j : B ! Stream is corecursively de�ned from g

1

and g

2

if H� j = g

1

and T� j =

�

j; id

�

� g

2

.

The function ZeroH : Stream ! Stream which changes the head of a stream into zero

can now be de�ned as ZeroH := Corec(Z�!)(in

2

� T), where ! is the unique morphism from

Stream to 1. (Informally, Z�! is of course just �s : Stream:0.)

As usual in categorical de�nitions, the de�nitions of initial algebra and terminal coalgebra

split up in two parts, the `existence part' (there's an h such that...) and the `uniqueness part'

(the h is unique.) In the following we shall sometimes refer to these two parts of the de�nition

as the existence property and the uniqueness property .

In the typed lambda calculi that we shall consider, the inductive and coinductive types will

not exactly represent initial algebras and terminal coalgebras. What the systems are lacking

is the uniqueness property for the morphism h in 2.1, respectively 2.3. Algebras, respectively

coalgebras, which only satisfy the existence property are called weakly initial , respectively weakly

terminal .

De�nition 2.5 For T an endofunctor in a category C, The T -algebra, respectively T -coalgebra,

(A; f) is weakly initial, respectively weakly terminal, if for every T -algebra, respectively T -

coalgebra, (B; g) there exists an arrow h that makes the diagram in 2.1, respectively 2.3, com-

mute.

Remark 2.6 The notion of weakly initial algebra is really weaker than that of initial algebra.

For example in the category Set, (2!;

�

Z;S

�

) is a weakly initial (�X:1 + X)-algebra, but also

(2!;

�

Z;S

0

�

), with S

0

(n) = S(n), S

0

(! + n) = n is. (On weakly initial algebras, the behaviour of

morphisms is only determined on the standard part of the algebra, that is in settheoretic terms,

those elements that are constructed by �nitely many times applying the constructor f . Initiality

says that the algebra is standard.)

As we made serious use of the uniqueness property in constructing the recursive and core-

cursive functions, it's interesting to see how much we can do in weak initial algebras and weak

terminal coalgebras. The construction of the iterative and coiterative functions of examples 2.2

and 2.4 can be done in the same way; we only loose the uniqueness property of the iteratively

de�ned function. The construction of recursive and corecursive functions in a weak framework

is not so straightforward. We shall study again the examples of natural numbers and streams of

natural numbers. Fix a category C, which has weak products and coproducts. (So we do have

e.g. �

1

� ht

1

; t

2

i = t

1

and

�

t

1

; t

2

�

� in

1

= t

1

, but not h�

1

� t; �

2

� ti = t and

�

t � in

1

; t � in

2

�

= t.)

It will turn out that weak products and coproducts will cause some extra restrictions on the

de�nability of functions. Therefore we shall also study what happens if product and coproduct

are semi , that is for products hf; gi�h = hf �h; g�hi and for coproducts h�

�

f; g

�

=

�

h�f; h�g

�

.

The reason for not considering the strong products and coproducts in these examples is that

in the syntax of typed lambda calculi product and coproduct are usually weak or semi. (The

notions of semi product and semi coproduct are taken from [Hayashi 1985].)

187

Example 2.7 (Recursion on a weak natural numbers object) Let Nat be a weakly initial �X:1+

X-algebra. Consider the diagram in 2.2, where we de�ned recursion in terms of iteration and

let h : Nat! B � Nat be some morphism that makes the diagram commute, i.e.

h �

�

Z;S

�

= h

�

g

1

; g

2

�

;

�

Z;S � �

2

�

i � id + h:

Applying projections to the left and injections to the right of the equation we obtain the following

equalities (where h

1

= �

1

� h and h

2

= �

2

� h).

h

1

� Z = g

1

;

h

1

� S = g

2

� h;

h

2

� Z = Z;

h

2

� S = S � h

2

:

Nat doesn't satisfy the uniqueness properties, so not necessarily h

2

= id

Nat

but only

h

2

� S

n

� Z = S

n

� Z

for every n 2 N, where S

n

denotes an n-fold composition of S. Now we would like to deduce

h

1

� Z = g

1

;

h

1

� S

n+1

� Z = g

2

� hh

1

; idi � S

n

� Z;

which says that h

1

satis�es the recusion equations for the `standard' natural numbers.

� For weak products this conclusion is only valid if g

2

= k � �

i

for some k : B ! B or

k : Nat ! B. (Note that if g

2

= k � �

1

for some k : B ! B, then h

1

is just iteratively

de�ned from g

1

and k, so only the case for g

2

= k � �

2

gives us really new functions, for

instance the predecessor.)

� For semi products this conclusion is only valid for g

2

= k �h�

1

; �

2

i for some k : B�Nat!

B, which is not a serious restriction: Just replace g

2

by g

2

� h�

1

; �

2

i.

Example 2.8 (Corecursion on a weak stream object) Let Stream be a weakly terminal �X:Nat�

X-coalgebra. Consider the diagram in 2.4, where we de�ned corecursion in terms of coiteration

and let h : (B + Stream)! Stream be some morphism that makes the diagram commute. Write

h

1

= h � in

1

and h

2

= h � in

2

. We have the following equalities.

H � h

2

= H;

T � h

2

= h

2

� T;

H � h

1

= g

1

;

T � h

1

= h � g

2

:

Now we can not conclude h � in

2

= id, because we don't have uniqueness, but we do have

H � T

n

� h

2

= H � T

n

;

that is h

2

is the identity on the `standard' part of the stream (those points that can be obtained

by �nitely many applications of H or T.) Again we would like to conclude

H � h

1

= g

1

;

H � T

n+1

� h

1

= H � T

n

�

�

h

1

; id

�

� g

2

;

that is h

1

satis�es the corecursion equations for the `standard' part of the stream.

188

� For weak coproducts this conclusion is only valid if g

2

= in

i

� k for some k : B ! B or

k : B ! Stream. (Note that if g

2

= in

1

�k for some k : B ! B, then h

1

is just coiteratively

de�ned from g

1

and k, so only the case for g

2

= in

2

� k gives us really new functions, like

for instance the function ZeroH.)

� For semi coproducts this conclusion is only valid if g

2

=

�

in

1

; in

2

�

� k for some k : B !

B + Stream. again this is not a serious restriction: Just replace g

2

by

�

in

1

; in

2

�

� g

2

.

For the morphism ZeroH : Stream! Stream which replaces the head by zero, de�ned in 2.4 by

Corec(Z�!)(in

2

� T), we now have (for either weak or semi coproducts)

H � ZeroH = Z;

H � T

n+1

� ZeroH = H � T

n+1

;

so ZeroH works �ne on the standard part of the stream. That one can not, in general, de�ne a

morphism ZeroH such that T � ZeroH = T will be shown later, when we look at these examples

in polymorphic lambda calculus which is an instance of a category with weakly initial algebras

and weakly terminal coalgebras, semi products and weak coproducts.

Remark 2.9 With strong products and coproducts we would have similar problems in de�ning

recursion and corecursion. The recursion equations would only be valid for the standard natural

numbers and the corecursion equations would only be valid for the standard part of streams. The

only advantage would be that the g

2

: B � Nat ! B, respectively the g

2

: B ! B + Stream can

be taken arbitrarily.

In Section 4 the polymorphic lambda calculus will be considered in which inductive and

coinductive types can be de�ned which correspond to weakly initial algebras and weakly terminal

coalgebras. It will be shown that recursion in that calculus is problematic from a point of view of

e�ciency. One solution could be to strengthen the reduction rules to get a stronger (extensional)

equality. However, it's not possible to add some relatively easy reduction rules to the syntax

to obtain the uniqueness property of initiality and terminality. (We can't say in an easy way

that the only objects of a structure are the standard ones.) This is because the equality of

(primitive) recursive functions can not be decided by an easy (decidable) equality. We can do

something di�erent, namely say that our functions should behave on the non-standard part as

they behave on the standard part. Categorically, this can be obtained by strengthening the

notion of weakly initial algebra and weakly terminal coalgebra a little bit, such that recursion

`works'. (That is for N, for c : A; g : A�Nat! A there is a function h : Nat! A, with h(0) = c

and h(n+ 1) = g(h(n); n).) These new notions will be called recursive algebra and corecursive

coalgebra. The de�nitions are not di�cult if one understands what makes it possible to de�ne

(co)recursion, in terms of (co)iteration.

Let in the following C be a category with weak products and weak coproducts and T a

functor from C to C.

189

De�nition 2.10 (A; f) is a recursive T -algebra if (A; f) is a T -algebra and for every g :

T (X �A)! X there exists an h : A! X such that the following diagram commutes.

TA

f

> A

T (hh; idi)

_

=

_

h

T (X �A)

g

> X

Notice that this is the same as saying that (A; f) is weakly initial and that moreover, in the

diagram for de�ning recursion in terms of iteration, h

2

= id. (See 2.2)

De�nition 2.11 (A; f) is a corecursive T -coalgebra if (A; f) is a T -coalgebra and for every

g : X ! T (X +A) there exists an h : X ! A such that the following diagram commutes.

X

g

> T (X +A)

h

_

=

_

T (

�

h; id

�

)

A

f

> TA

Again this is the same as saying that (A; f) is a weakly terminal T -coalgebra and that

moreover, in the diagram for de�ning corecursion in terms of coiteration, h

2

= id. (See 2.4)

When talking about weakly initial or recursive T -algebras and weakly terminal or corecursive

T -coalgebras, it is convenient to denote the h that makes the diagram commute as a function of

g. So we shall denote a weakly initial T -algebra by (A; f;Elim), where Elimg denotes a morphism

h in 2.5 that makes the diagram commute. Similarly, we write (A; f; Intro) for a weakly terminal

T -coalgebra, (A; f;Rec) for a recursive T -algebra and (A; f;Corec) for a corecursive T -coalgebra.

Examples 2.12 1. If (Nat;

�

Z;S

�

;Rec) is a recursive �X:1 + X-algebra, Rec is a recursor

on Nat: For

�

g

1

; g

2

�

: 1 + (X � Nat)! X,

Rec

�

g

1

; g

2

�

� Z = g

1

;

Rec

�

g

1

; g

2

�

� S = g

2

� hRec

�

g

1

; g

2

�

; idi;

so Rec

�

g

1

; g

2

�

is the recursively de�ned function from g

1

and g

2

. We can de�ne P :=

Rec

�

Z; �

2

�

and we have

P � Z = Z;

P � S = id:

2. If (Stream; hH;Ti;Corec) is a corecursive �X:Nat�X-coalgebra. Then for hg

1

; g

2

i : X !

Nat� (X + Stream), the function Corechg

1

; g

2

i satis�es

H � Corechg

1

; g

2

i = g

1

;

T � Corechg

1

; g

2

i =

�

Corechg

1

; g

2

i; id

�

� g

2

;

190

so Corechg

1

; g

2

i is the corecursively de�ned function from g

1

and g

2

. We can de�ne

ZeroH := CorechZ�!; in

2

� Ti

with

H � ZeroH = Z�!;

T � ZeroH = T:

3 Extending simply typed lambda calculus with inductive and

coinductive types

In his thesis ([Hagino 1987a]) Hagino derives from the notions of initial algebra and terminal

coalgebra an extension of simply typed lambda calculus, which he calls categorical data types.

This amounts to adding two schemes for de�ning a new type from a covariant functor from

types to types. (In the notation of these schemes below we follow [Wraith 1989].) These new

types come together with some constants and reduction rules. A covariant functor from types

to types in � ! is a positive type scheme �(�), that is a type � in which the free variable �

occurs positively . (The type variable � occurs positively in the type � if � =2 FV(�), � � �

or if � � �

1

!�

2

and � occurs negatively in �

1

, positively in �

2

. The type variable � occurs

negatively in � if � =2 FV(�), � � � or if � � �

1

!�

2

and � occurs negatively in �

2

, positively

in �

1

.) If �(�) is a type scheme, with �(�) we mean the type � with � substituted for �. If

there's no ambiguity to which type variable � we're referring, we just write � in stead of �(�).

A positive, respectively negative type scheme � can be applied to a function f :�!�, ob-

taining �(f):�(�)!�(�), respectively �(f):�(�)!�(�) by lifting : �(f) � f , if � =2 FV(�),

�(f) � id

�

and if � occurs negatively in �

1

, positively in �

2

then

(�

1

!�

2

)(f) � �x:�

1

(�)!�

2

(�):�y:�

1

(�):�

2

(f)(x(�

1

(f)y));

(�

2

!�

1

)(f) � �x:�

2

(�)!�

1

(�):�y:�

2

(�):�

1

(f)(x(�

2

(f)y)):

De�nition 3.1 Let �

1

;�

2

; : : : ;�

n

be types in the simply typed lambda calculus in which the

typevariable � occurs positively. The sum scheme for constructing data types is the following.

� = sum � with constructors

c

1

: �

1

!�

c

2

: �

2

!�

.

.

.

c

n

: �

n

!�

end

A declaration of a type � using this sum scheme gives rise to an extension of the language of

�! with

1. a closed type �

2. constants c

i

:�

i

(�)!� for 1 � i � n,

3. for every type � , Elim

�

:(�

1

(�)!�)!(�

2

(�)!�)! : : :!(�

n

(�)!�)!�!� .

The reduction relation is extended with the rule

Elim

�

M

1

M

2

: : :M

n

(c

i

t) �!M

i

(�

i

(Elim

�

M

1

: : :M

n

)t)

191

An easy example of a type de�ned by the sum scheme is �+� (for � and � types), representing

the the disjoint sum of � and � .

� + � = sum � with constructors

inl : �!�

inr : �!�

end

with inl : �!� + � , inr : �!� + � and for M

1

:�!�, M

2

:�!�, [M

1

;M

2

] : � + �!�.

The sequence of type schemes in the sum scheme can also be empty, allowing us to de�ne

the unit type by

1 = sum � with constructors

� : �

end

We have � : 1 and for any t : � , !(t) : 1!� with !(t)(�) �! t.

De�nition 3.2 Let �

1

;�

2

; : : : ;�

n

be types in the simply typed lambda calculus in which the

typevariable � occurs positively. The product scheme for constructing new data types is the

following.

� = product � with destructors

d

1

: �!�

1

d

2

: �!�

2

.

.

.

d

n

: �!�

n

end

A declaration of a type � using this product scheme gives rise to an extension of the language

of �! with

1. a closed type �,

2. constants d

i

:�!�

i

(�), for 1 � i � n,

3. for every type � , Intro

�

:(�!�

1

(�))!(�!�

2

(�))! : : :!(�!�

n

(�))!�!�.

The reduction relation is extended with the rule

d

i

(Intro

�

M

1

M

2

: : : M

n

t) �! �

i

(Intro

�

M

1

: : : M

n

)(M

i

t)

The straightforward example of a type de�ned by the product scheme is �� � (for � and �

types), representing the the product of � and � .

� � � = product � with destructors

fst : �!�

snd : �!�

end

with fst : � � �!�, snd : � � �!� and for M

1

:�!�, M

2

:�!� , <M

1

;M

2

> : �!� � � .

Remark 3.3 The type � de�ned by the sum scheme from �

1

(�); : : :�

n

(�), will be denoted by

��:(�

1

(�) + : : : + �

n

(�)). The type � de�ned by the product scheme from �

1

(�); : : :�

n

(�),

will be denoted by ��:(�

1

(�) � : : : � �

n

(�)). This is also how these types should be read: as

(weakly) initial algebras of TX = �

1

(X) + : : : + �

n

(X) and (weakly) terminal coalgebras of

TX = �

1

(X) � : : : � �

n

(X), respectively. (So dualising is of course not the same as reversing

all the arrows in a sum scheme to obtain a product scheme!)

192

De�nition 3.4 � !

ind

is the simply typed lambda calculus extended with sum scheme and

product scheme.

Example 3.5 The iterative functions on an inductive type can be straightforwardly de�ned by

the Elim construct. Write Nat for ��:1 + �, then for c:� and f :�!� , Elim(�z:c)f :Nat!�

is the iteratively de�ned function from c and f . The recursive functions can be de�ned by

translating recursion in terms of iteration as is done in 2.2. For c:� , g:�!Nat!� , de�ne

Reccg := fst � Elim(�z:hc; 0i)(h�x:g(fstx)(sndx); S � sndi) and we have

Reccg0 �!�! c;

Reccg(S

n+1

(0)) �!�! g(Reccg(S

n

0))(snd(Elim(�z:hc; 0i)(h�x:g(fstx)(sndx); S � sndi)(S

n

(0)))):

This recursor only works for terms of type Nat which are of the form S

n

0, but moreover, it

is quite ine�cient (compared to, for instance, the recursor in G�odels T).

Proposition 3.6 The predecessor function of type Nat!Nat, de�ned in terms of iteration in

�!

ind

computes the predecessor of a numeral n+ 1 in 3n+ 2 steps.

Proof The predecessor function P is the ��-normal form of Rec0(�xy:y), so

P � fst � Elim

Nat�Nat

(�z:h0; 0i)(hsnd; S � sndi):

Now

P (S

n+1

0) �!�!

2

snd(Elim(�z:h0; 0i)(hsnd; S � sndi)(S

n

(0)));

snd(Elim(�z:h0; 0i)(hsnd; S � sndi)(0)) �!�!

3

0

and with induction one proves that

snd(Elim(�z:h0; 0i)(hsnd; S�sndi)(S

n+1

(0))) �!�!

3

S(snd(Elim(�z:h0; 0i)(hsnd; S�sndi)(S

n

(0)))):

Proposition 3.7 In �!

ind

there is no term P :Nat!Nat with

P (S0) = 0 and

P (Sx) = x

for x a variable of type Nat.

Proof This follows by the Church-Rosser property for reduction in �!

ind

. (See [Hagino 1987b].)

If P (Sx) = x, then P (Sx) �!�! x. Analyzing the possible structure of P one can conclude that

if P (Sx) �!�! x, then not at the same time P (S0) �!�! 0. This proposition is also an immediate

corollary of the same proposition for system F in 4.

If one tries to do corecursion on the coinductive types in �!

ind

, a similar situation occurs.

For Stream := ��:Nat��, one can de�ne ZeroH:Stream!Stream which replaces the head by 0

using the de�nable corecursion in weakly terminal coalgebras. We do not have T (ZeroHs) = Ts,

for s a Stream, but just H(ZeroHs) = 0 and H(T

n+1

(ZeroHs)) = H(T

n+1

s). One can also show

that there can be no term ZeroH:Stream!Stream such that T (ZeroHs) = s for a variable

s:Stream. (Using the Church-Rosser property or as a corollary of the same proposition for

system F.)

193

There are of course ways to strengthen the equalities of the sum and product scheme to get

real recursion and corecursion. The initiality can be restored totally by adding the conditional

rewrite rule

If h(c

i

t) = M

i

(�

i

[h]t) for 1 � i � n and M

i

and t of appropriate type, then h �! Elim

�

M

1

: : :M

n

:

However, conditional rewrite rules are metatheoretically very complicated (the rewriting de-

pends on the typing and on the previously generated equality.) Another alternative, which

restores part of the unicity is to add a rewrite rule

Elim

�

c

1

: : : c

n

�! Id

�

;

for

� = sum � with constructors

c

1

: �

1

!�

c

2

: �

2

!�

.

.

.

c

n

: �

n

!�

end

This is not enough to obtain a recursive algebra, because the Elim constructor doesn't auto-

matically commute with pairing. One has to add

snd � Elim

���

hg

1

; c

1

� �

1

(snd)i; : : : ; hg

n

; c

n

� �

n

(snd)i �! Elim

�

c

1

: : : c

n

:

In the proof of Proposition 3.6, we then have that Rec0(�xy:y)(S

n+1

0) �!�! S

N

(0) in a constant

number of steps. In this case it is of course better to take � (and + if we add similar rules

for the product scheme) as primitive type constructors. The new reduction rule is not a very

pretty one.

We can also follow the categorical de�nitions of recursion and corecursion and strengthen

the sum and product schemes themselves. (Again it is best to take � and + as primitives.) For

the sum scheme this would lead to the type � with the same constructors and further

1. for every type � , Rec

�

:(�

1

(� � �)!�)!(�

2

(� � �)!�)! : : : (�

n

(� � �)!�)!�!� ,

2. the reduction rule Rec

�

M

1

M

2

: : : M

n

(c

i

t) �!M

i

(�

i

[hRec

�

M

1

: : :M

n

; idi]t)

For the product scheme we would also get the same type � with the same destructors and

further

1. for every type � , Corec

�

:(�!�

1

(� + �))!(�!�

2

(� + �))! : : : (�!�

n

(� + �))!�!�,

2. the reduction rule d

i

(Corec

�

M

1

M

2

: : :M

n

t) �! �

i

[[id;Corec

�

M

1

: : :M

n

]](M

i

t).

Call the system �!

ind

with modi�ed sum and product scheme as above �!

rec

. Without proof

we give the following proposition.

Proposition 3.8 In the system �!

rec

the inductive types are recursive algebras and the coin-

ductive types are corecursive coalgebras. (For the appropriate functors.)

194

4 The polymorphic lambda calculus

We just give the rules to �x our notation and shall not go into the system further, assuming

it is familiar. We write � and + for the de�nable weak product and coproduct: � � � �

8�:(�!�!�)!� and � + � � 8�:(�!�)!(�!�)!�.) We could also have added � and +

as new type constructors with extra rules turning them into a weak product and coproduct.

This however is inconvenient: The added � and + would not be functorial (e.g. � : Types �

Types!Types does not preserve identities and composition), whereas the de�nable � and +

are functorial by construction if we assume an �-reduction rule. (See De�nition 4.2 and the

discussion.)

De�nition 4.1 1. The set of types of F , T, is de�ned by the following abstract syntax.

T ::= TypVar jT!T j 8TypVar:T

2. The expressions of F , T , are de�ned by the following abstract syntax.

T ::= Var jTT jTT j�Var:T:T j�TypV ar:T

3. A context is a sequence of declarations x:� (x 2 Var and � 2 T), where it is assumed

that if x:� and y:� are di�erent declarations in the same context, then x 6� y.

4. The typing rules for deriving judgements of the form � ` M :� for � a context, M an

expression and � a type, are the following.

� If x:� is in �, then � ` x:�,

�

� `M :�!� � ` N :�

� `MN :�

�; x:� `M :�

� ` �x:�:M :�!�

�

� `M :8�:�

� `M� :�[�=�]

if � 2 T.

� `M :�

� ` ��:M :8�:�

if � =2 FTV(�).

FTV denotes the set of free type variables (TypVar.)

5. The one step reduction rules are the following.

� (�x:�:M)N �!

�

M [N=x],

� �x:�:Mx �!

�

M if x =2 FV(M),

� (��:M)� �!

�

M [�=�],

� ��:M� �!

�

M if � =2 FTV(M).

FV denotes the free term variables (Var.) One step reduction, �!, is de�ned as the union

of �!

�

and �!

�

. The relations �!�! and = are respectively de�ned as the transitive,

re
exive and the transitive, re
exive, symmetric closure of �!.

Here, t

0

[t=u] denotes the substitution of t for the variable u in t

0

. Substitution is done

with the usual care, renaming bound variables such that no free variable becomes bound after

substitution.

195

Type variables will be denoted by the lower case Greek characters �, � and
, term variables

will be denoted by lower case Roman characters. The set of expressions typable in the context

� with type � is denoted by Term(�;�).

We want to discuss categorical notions like weak initiality in the syntax and therefore de�ne

need a syntactic notion of functor. This will be covered by the (well-known) notion of positive

or negative type scheme.

De�nition 4.2 1. A type scheme in F is a type �(�) where � marks all occurrences (possibly

none) of �.

2. A type scheme �(�) can be positive or negative (but also none of the both), which is

de�ned by induction on the structure of �(�) as follows.

(a) If � =2 FTV(�(�)), then �(�) is positive and negative,

(b) if �(�) � � then �(�) is positive,

(c) if �(�) � �

1

(�)!�

2

(�), then �(�) is positive if �

1

(�) is negative and �

2

(�) is

positive, �(�) is negative if �

1

(�) is positive and �

2

(�) is negative,

(d) if �(�) � 8�:�

0

(�) then �(�) � 8�:�

0

(�) is positive (resp. negative) if �

0

(�) is

positive (resp. negative) .

3. A positive (resp. negative) type scheme �(�) works covariantly (resp. contravariantly) on

a term f :�!� , obtaining a term �(f) of type �(�)!�(�) (resp. �(�)!�(�)), by lifting,

de�ned inductively as follows. (Let f :�!� .)

(a) If � =2 FTV(�(�)), then �(f) := id

�(�)

,

(b) if �(�) � � then �(f) := f ,

(c) if �(�) � �

1

(�)!�

2

(�), then, if �(�) is positive,

�(f) := �x:�

1

(�)!�

2

(�):�y:�

1

(�):�

2

(f)(x(�

1

(f)y))), if �(�) is negative,

�(f) := �x:�

2

(�)!�

1

(�):�y:�

2

(�):�

1

(f)(x(�

2

(f)y))),

(d) if �(�) � 8�:�

0

(�), then, if �(�) is positive, �(f) := �x:�(�):��:�

0

(f)(x�), if �(�)

is negative, then �(f) := �x:�(�):��:�

0

(f)(x�).

It is easy to check that the lifting preserves identity and composition: �(id) = id and if

�(�) is positive then �(f � g) = �(f) � �(g), if �(�) is negative then �(f � g) = �(g) � �(f).

This also works for type schemes containing � or +, if we interpret � and + as the de�nable

weak product and coproduct:

� � � =: 8�:(�!�!�)!�;

fst := �x:� � �:x�(�y:�:�z:�:y);

snd := �x:� � �:x�(�y:�:�z:�:z);

<f; g> := �z:�:��:�k:�!�!�:k(fz)(gz);

for f :�!�; g:�!�;

� + � =: 8�:(�!�)!(�!�)!�;

inl := �x:�:��:�f : �!�:�g:�!�:fx;

inr := �x:�:��:�f : �!�:�g:�!�:gx;

[f; g] := �z:� + �:z�fg;

for f :�!�; g:�!�:

196

It should be remarked here that if one lifts f :�!� via a type scheme �(�) � �

1

(�) �

�

2

(�) (respectively �(�) � �

1

(�) + �

2

(�)) according to De�nition 4.2, this does not give

the (expected) result �(f) = �x:�(�):<�

1

(f)(fstx);�

2

(f)(sndx)> (respectively �(f) = [inl �

�

1

(f); inr � �

2

(f)].) If we take the latter de�nition for lifting a function via a product or sum,

this doesn't yield functoriality of � and +. We introduce some new notation to denote this

lifting via � and +.

De�nition 4.3 Let f :�!� , g:�!�.

1. timesfg : � � �!� � � is de�ned by

timesfg := �z:� � �:��:�y:�!�!�:z�(�p:�:�q:�:y(fp)(gq)):

2. plusfg : � + �!� + � is de�ned by

plusfg := �z:� + �:��:�y

1

:�!�:y

2

:�!�:z�(y

1

� f)(y

2

� g):

Now for f :�!� , if �(�) = �

1

(�) � �

2

(�) then �(f) = times(�

1

(f))(�

2

(f)) and if 	(�) =

	

1

(�) + 	

2

(�) then 	(f) = plus(

1

(f))(

2

(f)). Let's state some more easy facts about times

and plus, some of which will be used later.

Fact 4.4 For f; g; h and k of the right type we have.

1. plusfg � inl = inl � f ,

2. plusfg � inr = inr � g,

3. plusfg � plushk = plus(f � h)(g � k),

4. timesfg � timeshk = times(f � h)(g � k),

5. [f; g] � plushk = [f � h; g � k],

6. plushk �<f; g> = <h � f; k � g>.

(In general we don't have fst � timesfg = f � fst or snd � timesfg = g � snd.)

Positive (negative) type schemes can really be viewed as (contravariant) functors in the

syntax of polymorphic lambda calculus. (Consider a syntax with countably many variables

of every type and view types as objects and terms of type �!� as morphisms from � to � .)

The positive type schemes are a syntactic version of covariant functors. Similarly we also have

syntactic versions of weakly initial (terminal) (co)algebras and (co)recursive (co)algebras.

De�nition 4.5 Suppose we work in (an extension of) polymorphic lambda calculus where we

have �xed a notation for weak products and coproducts (e.g. the second order de�nable ones.)

Let �(�) be a positive type scheme.

1. The triple (�

0

;M

0

;Elim) is a syntactic weakly initial �-algebra if

(a) �

0

2 T,

(b) `M

0

:�(�

0

)!�

0

,

197

(c) ` Elim:8�:(�(�)!�)!�

0

!�,

such that

Elim�g �M

0

= g � �(Elim�g)

for any � 2 T and � ` g:�(�)!� .

2. The triple (�

1

;M

1

; Intro) is a syntactic weakly terminal �-coalgebra if

(a) �

1

2 T,

(b) ` f

1

:�

1

!�(�

1

),

(c) ` Intro:8�:(�!�(�))!�!�

1

,

such that

M

1

� Intro�g = �(Intro�g) � g

for any � 2 T and � ` g:�!�(�).

3. The triple (�

0

;M

0

;Rec) is a syntactic recursive �-algebra if

(a) �

0

2 T,

(b) `M

0

:�(�

0

)!�

0

,

(c) ` Rec:8�:(�(� � �

0

)!�)!�

0

!�,

such that

Rec�g �M

0

= g � �(<Rec�g; id>)

for any � 2 T and � ` g:�(� � �

0

)!� .

4. The triple (�

1

;M

1

;Corec) is a syntactic corecursive �-coalgebra if

(a) �

1

2 T,

(b) ` f

1

:�

1

!�(�

1

),

(c) ` Corec:8�:(�!�(� + �

1

))!�!�

1

,

such that

M

1

� Corec�g = �([Corec�g; id]) � g

for any � 2 T and � ` g:�!�(� + �

1

).

We have the following proposition, of which the �rst part is a syntactic version of a result

in [Reynolds and Plotkin 1990] and the second part is a result of [Wraith 1989]. In fact, the

�rst part of the proposition says that the algebraic inductive data types can be represented in

F , which result originally goes back to [B�ohm and Berarducci 1985]. Here we just want to give

these representations in short; for further details one may consult [B�ohm and Berarducci 1985],

[Leivant 1989] or [Girard et al. 1989].

Proposition 4.6 We work in the system F . Let �(�) be a positive type scheme. Then

1. There is a syntactic weakly initial �-algebra.

2. There is a syntactic weakly terminal �-coalgebra.

198

Proof Let �(�) be a positive type scheme.

1. De�ne �

0

:= 8�:(�(�)!�)!�, M

0

:= �x:�(�):��:�g:�(�)!�:g(�(Elim�g)x), and Elim :=

��:�g:�(�)!�:�y:�:y�g. Now (�

0

;M

0

;Elim) is a syntactic weakly initial �-algebra.

2. De�ne �

1

:= 8�:(8�:(�!�(�))!�!�)!�,

M

1

:= �x:�:x(�(�))(��:�g:�!�(�):�z:�:�(Intro�g)(gx)), and

Intro := ��:�g:�!�(�):�y:�:��:�h:8
:(
!�(
))!
!�:h�gy. Now (�

1

;M

1

; Intro) is a

syntactic weakly terminal �-coalgebra.

We don't know whether there are syntactic recursive algebras or syntactic corecursive coalge-

bras in F . The answer seems to be negative. The well-known de�nitions of algebraic data-types

in F (which are almost the ones de�ned in the proof above) do in general not allow recursion or

corecursion, as will be illustrated by looking at the examples of natural numbers and streams

of natural numbers. This means that recursion and corecursion have to be de�ned in terms of

iteration and coiteration, using the techniques discussed in the Examples 2.7 and 2.8. As was

noticed there, it makes a di�erence whether product and coproduct are weak or semi, so let's

note the following fact.

Fact 4.7 The de�nable coproduct in F is a weak coproduct, but the de�nable product in F is a

semi product.

(That is, <f; g> � h = <f � h; g � h>, but not h � [f; g] = [h � f; h � g])

Example 4.8 (See also Example 3.5 and Proposition 3.6.)We de�ne recursive functions on the

weak initial algebra of natural numbers.

Let (Nat;M

0

;Elim) be the syntactic weak initial algebra of �(�) = 1 + �, as given in the proof

of 4.6, where 1 and + are the second order de�nable ones. (One can also take the well-known

polymorphic Church numerals, which is a slight modi�cation of our type Nat. The exposition is

not essentially di�erent, but we want to use our categorical understanding of recursion of 2.7.)

So Nat = 8�((1 + �)!�)!�, M

0

= �x:1 + Nat:��:�g:g((id + Elim�g)x) and

Elim = ��:�g:�y:Nat:y�g. Now we �rst de�ne Z := M

0

� inl and S := M

0

� inr.

Following Example 2.7, we now de�ne Recg = fst � Elim(� �Nat)(<g; [Z;S � snd]>), for g:1 +

� �Nat!� . If

g = [g

1

; k �<fst; snd>]

for some k:� �Nat!� , we obtain the recursion equalities for Recg:

Recg � Z = g

1

;

Recg � S

n+1

� Z = k �<Recg; id> � S

n

� Z:

(See 2.7 for the restriction on the form of g; the product is semi here.) The predecessor is now

de�ned by taking g = [Z; snd], so P := fst �Elim(� �Nat)(<[Z; snd]; [Z;S � snd]>). Notice that

P (St) = t only for standard natural numbers, i.e. for t = S

n

(Z�), with � the unique (closed)

term of type 1. Also notice that P computes the predecessor of a natural number n in a number

of steps of order n.

Example 4.9 We de�ne corecursive functions on streams of natural numbers. Take for Stream

the syntactic weakly terminal �-coalgebra as in the proof of 4.6, for �(�) = Nat � �. So

Stream = 8�:(8�:(�!(Nat � �))!�!�)!�, M

1

= �x:Stream:x(Nat � �)(��:�g:�!Nat �

199

�:�z:�:(id� Intro�g)(gx)), and

Intro = ��:�g:�!Nat � �:�y:�:��:�h:8
:(
!Nat �
)!
!�:h�gy. We can de�ne head and

tail functions by taking H := fst � M

1

and T := snd �M

1

. Following Example 2.8, we now

de�ne for g:�!Nat� (� + Stream) Corecg := Intro(� + Stream)([g;<H; inr �T>]) � inl. As the

coproduct is not semi, but weak (see 2.8), we �nd that only for g = <g

1

; in � k> for in is inr or

inl and some k:Stream!B or k:Stream!Stream we obtain the corecursion equations.

H � Corecg = g

1

;

T � Corecg = [Corecg; id] � snd � g:

The function that replaces the head of a stream by zero is now de�ned by ZeroH := Corec<Z; inr�

T>

It is really impossible to de�ne a `global' predecessor on the weakly initial natural numbers

as described above (and similarly for the polymorphic Church numerals.) Also it is impossible

to de�ne a global ZeroH-function on the weakly terminal streams as described above. This is

shown in the following proposition.

Proposition 4.10 1. For Nat = 8�((1 + �)!�)!�, there is no closed term P :Nat!Nat

such that P (Sx) = x for x a variable.

2. For Stream := 8�:(8
:(
!Nat)!(
!
)!
!�)!� there is no closed term

ZeroH:Stream!Stream such that T(ZeroHy) = Ty and H(ZeroHy) = 0 for y a variable.

Proof Both cases immediately by the Church-Rosser property for the system F .

One can show in general that the (co)inductive types in system F as de�ned above do not

allow (co)recursion, i.e. they are weakly initial (terminal) (co)algebras.

5 Recursive algebras and corecursive coalgebras and polymor-

phism

We de�ne an extension of F which includes a syntactic formalization of recursive algebras and

corecursive coalgebras. Then we show the remarkable fact that in this system one can de�ne

recursive algebras in terms of corecursive coalgebras and vice versa, so one of the two is enough

to be able to de�ne the other. This fact has a counterpart in semantics in the form that every

K-model of polymorphic lambda calculus that has a recursive T -algebras for every expressible

functor T , also has a corecursive T -coalgebra for every expressible functor T and vice versa.

(The notion of K-model is in [Reynolds and Plotkin 1990]; it is a syntax dependent notion of

model for F , described by giving a set of constraints that a structure and an interpretation

function should satisfy in order to be a model. As it covers a lot of known models it serves well

as a framework for stating this property semantically. Also the notion of expressible functor

comes from [Reynolds and Plotkin 1990]; roughly speaking, a functor is expressible if there is a

type scheme whose interpretation in the model (as a function of the free type variable) is a the

functor.)

We then want to relate our extension of F with recursive (and corecursive) types to a sys-

tem described by [Mendler 1987]. The latter system has a di�erent scheme for recursive (and

corecursive) types, the syntax of which is a bit too weak to de�ne one in terms of the other.

200

We can, however, interpret our system with recursive and corecursive types in Mendler's (with

either recursive or corecursive types.) This is done by showing that the system has syntactic

recursive �-algebras and syntactic corecursive �-coalgebras for every positive type scheme �.

(See De�nition 4.5.)

De�nition 5.1 The system F

(co)rec

is the system F extended with the following.

1. The set of types T is extended with ��:�(�) and ��:�(�), for �(�) a positive type scheme.

2. For ��:�(�) and ��:�(�) we have the extra constants

In

�

: �(�)!� Rec

�

: 8�:(�(�� �)!�)!�!�;

Out

�

: �!�(�) Corec

�

: 8�:(�!�(�+ �))!�!�:

3. Reduction rules for � and �:

Rec�g(Inx) �!

�

g(�(<Rec�g; id>)x);

Out(Corec�gx) �!

�

�([Corec�g; id])(gx):

(� abbreviates ��:�(�) and � abbreviates ��:�(�).)

We now have the following theorem, stating that in polymorphic lambda calculus, if one

has recursive types the corecursive types can be de�ned and vice versa.

Theorem 5.2 In F we can de�ne �, Out and Corec in terms of �, In and Rec and vice versa.

Proof Suppose we only have the rules for �, In and Rec and let � be a positive type scheme.

De�ne

�(�) := 8
:(8�:(�!�(� + �)� �)!
)!
;

� := ��:�(�);

Corec := ��:�g:�!�(�+ �):�x:�:In

�

(�
:�h:8�:(�!�(� + �)� �)!
:h�<g; x>);

Out := Rec

�

(�(�))(�z:�(�(�)� �):z(�(�))(�
:�p:�([Corec
(�(plus(id)(snd)) � p

1

); snd])(p

1

p

2

)));

where p

1

and p

2

abbreviate fstp and sndp (the type of p is (
!�(
 + (�(�) � �))) � �.) We

have

Rec

�

�g(In

�

x) �!

�

g(�(<Rec

�

�g; id>)x);

for any g and x of appropriate types and we want to show

Out(Corec�gx) �!�! �([Corec�g; id])(gx))

for g:�!�(� + �) and x:� .

To make things easier to read we omit the type information in lambda abstractions. Let

� be a type, g:�!�(� + �) and x:� and abbreviate F � �
p:�([Corec
(�(plus(id)(snd)) �

p

1

); snd])(p

1

p

2

): The lifting of an f via � is de�ned as (following 4.2)

�(f) � �t
k:t
(��z:k�(times(�yx:plus(id)f(yx))(id)z):

201

Now

Out(Corec�gx) �!�! Rec

�

(�(�))(�z:z(�(�))F)(In

�

(�
h:h�<g; x>))

�!�! �(<Rec

�

(�(�))(�z:z(�(�))F); id>)(�
h:h�<g; x>)(�(�))F

�!�! (��z:F�(times(�yx:�(plus(id)F)(yx)(id)z))�<g; x>

�!�! �([Corec�(�(plus(id)(snd)) � �(plus(id)F) � g; snd])(�(plus(id)F)(gx))

�!�! �([Corec�g; snd] � plus(id)F))(gx)

�!�! �([Corec�g; id])(gx):

The other way around, suppose we only have rules for �, Out and Corec and let � be a

positive type scheme. De�ne

�(�) = 8�:(�(� � �)!�)!�;

� := ��:�(�);

Rec := ���g:�(�� �)!�:�x:�:Out

�

x�g;

In := Corec

�

(�(�))(�z:�(�):��:�h:�(� � �(�))!�:h(�(<Rec�(h � �(id� inr)); inr>)z)):

We have

Out

�

(Corec

�

�gx) �!�! �([Corec

�

�g; id])(gx))

and we want to prove

Rec�g(Inx) �!�! g(�(<Rec�g; id>)x):

We omit again type information in lambda abstractions and abbreviate F � �z�h:h(�(<Rec�(h�

�(id� inr)); inr>)z). According to De�nition 4.2,

�(f) � �t�k:t�(�z:k(�(times(id)f)z)):

Now

Rec�g(Inx) �!�! Out

�

(Corec

�

(�(�))Fx)�g

�!�! �([Corec

�

(�(�))F; id])(��h:h(�(<Rec�(h � �(id� inr)); inr>)x)�g

�!�! (��h:h(�(<Rec�(h � �(id� inr)); inr>)x)�(�z:g(�(times(id)F)z))

�!�! g(�(times(id)F)(�(<Rec�(�z:g(�(times(id)F)z) � �(times(id)(inr)); inr>)x)

�!�! g(�(<Rec�(g � �(times(id)F) � �(times(id)(inr); id>)x)

�!�! g(�(<Rec�g; id>)x)

We now want to look at the system of recursive types, as de�ned by [Mendler 1987], let's

call it F

(CO)REC

. (The system also has corecursive types.)

De�nition 5.3 ([Mendler 1987]) The system F

(CO)REC

is de�ned by adding to the polymor-

phic lambda calculus the following.

1. The set of types T is extended with ��:�(�) and ��:�(�), for �(�) a positive type scheme.

2. For ��:�(�) and ��:�(�) we have the extra constants

in

�

: �(�)!� R

�

: 8�:(8
:(
!�)!(
!�)!�(
)!�)!�!�;

out

�

: �!�(�)

�

: 8�:(8
:(�!
)!(�!
)!�!�(
))!�!�:

202

3. Reduction rules for � and �:

R

�

�g(in

�

x) �!

�

g�(id

�

)(R

�

�g)x;

out

�

(

�

�gx) �!

�

g�(id

�

)(

�

�g)x:

(� abbreviates ��:�(�) and � abbreviates ��:�(�).)

In [Mendler 1987] it is shown that this system satis�es a lot of nice meta-properties, like

strong normalization and con
uence of the reduction relation.

De�nition 5.4 The system F

(CO)REC

with only the rules for � will be called F

REC

and similarly,

F

(CO)REC

with only the rules for � will be called F

COREC

.

We show that the system F

(co)rec

can be de�ned in both F

REC

and F

COREC

, so both systems

have all syntactic recursive algebras and all syntactic corecursive coalgebras.

Proposition 5.5 1. The �-types of F

(co)rec

can be de�ned in F

REC

.

2. The �-types of F

(co)rec

can be de�ned in F

COREC

.

Proof Let �(�) be a positive type scheme.

1. Write � for ��:�(�) and take In = in,

Rec

�

= ��:�g:�(���)!�:R

�

�(��:�f :�!�:�k:�!�:g��(<k; f>)): Then �, In and Rec

�

together de�ne the �-type of F

(co)rec

in the sense that Rec

�

�g(Inx) = g(�(<Rec

�

�g; id>)x).

2. Write � for ��:�(�) and take Out = out,

Corec

�

= ��:�g:�!�(� + �):
�(��:�f :�!�:�k:�!�:�([k; f]) � g): Then �, Out and

Corec

�

together de�ne the �-type of F

(co)rec

becauseOut(Corec

�

�gx) = �([Corec

�

�g; id])(gx).

Corollary 5.6 1. F

(co)rec

can be de�ned in both F

REC

and F

COREC

.

2. For every positive type scheme �(�) both F

REC

and F

COREC

have a syntactic recursive

�-algebra and a syntactic corecursive �-coalgebra.

Proof Both immediately by the proposition and Theorem 5.2.

As a corollary of the translation of F

(co)rec

in to F

(CO)REC

we �nd that F

(co)rec

is strongly

normalizing.

Proposition 5.7 The reduction relation of the system F

(co)rec

is strongly normalizing and con-

uent.

Proof In order to prove strong normalization we de�ne a mapping [�] from the terms of

F

(co)rec

to the term of F

(CO)REC

that preserves in�nite reduction paths. Then F

(co)rec

is strongly

normalizing by the fact that F

(CO)REC

is strongly normalizing (see [Mendler 1987].) One easily

veri�es that the system is weakly con
uent (i.e. if M �! N and M �!P, then 9Q[N �!�!

Q&P �!�! Q].) The con
uence then follows from Newman's lemma ([Newman 1942]), stating

that strong normalization and weak con
uence together imply con
uence.

203

The de�nition of [�] is very similar to the mapping de�ned in the proof of Proposition

5.5. (As the types do not in any way interfere with the reduction process we omit the types in

abstractions.) De�ne [�] by

[Rec

�

] := ��g:R

�

�(��fk:g � �(<k; f>));

[Rec

�

�] := �g:R

�

�(��fk:g � �(<k; f>));

[Rec

�

�g] := R

�

�(��fk:g � �(<k; f>));

[In] := in;

[Corec

�

] := ��g:
�(��fk:�([k; f]) � g);

[Corec

�

�] := �g:
�(��fk:�([k; f]) � g);

[Corec

�

�g] :=
�(��fk:�([k; f]) � g);

[Out] := out;

and further by induction on the structure of the terms. Then

M �!

�

N) [M] �!�!

+

�

[N];

M �!

�

N) [M] �!�!

�

[N];

M �!

�

N) [M] �!

�

[N];

M �!

�

N) [M] �!

�

[N];

where �!�!

+

�

denotes a reduction in at least one step. As there is no in�nite �-reduction in

F

(co)rec

, the mapping [�] maps an in�nite reduction path in F

(co)rec

to an in�nite reduction path

in F

(CO)REC

, so we are done.

It doesn't seem possible to de�ne the �-types in terms of the �-types in F

(CO)REC

, nor

to de�ne the system F

COREC

in the system F

corec

. When one attempts to do so, some extra

equalities seem to be required.

6 Discussion

As pointed out by Christine Paulin ([Paulin 1992]) the technique in the proof of Theorem 5.2

also applies to a polymorphic lambda calculus with a kind of `retract types' that we shall

describe now. We give the syntax as it has been communicated to us by Christine Paulin; it is

implicit in papers by Parigot ([Parigot 1988] and [Parigot 1992]), where extensions of the system

AF2 with recursive types are studied. (AF2 is a system of second oder predicate logic with an

interpretation of proofs as untyped lambda terms.) The connections between our system with

recursive types and the (extensions) of AF2 is a subject which needs further investigation; we

feel that this is not the place to do so.

De�nition 6.1 The system F

ret

is the extension of system F with the following.

1. The set of types T is extended with ��:�(�), for �(�) a positive type scheme.

2. For ��:�(�) we have the extra constants

i

�

: �(�)!�;o

�

: �!�(�):

204

3. Reduction rule for �:

o

�

(i

�

x) �!

�

x:

(� abbreviates ��:�(�).)

In this system one can construct for �(�) a positive type scheme a type � with �(�) < �

(�(�) is a retract of �.) As pointed out to us by [Paulin 1992], the technique of 5.2 can be

applied to obtain that both the systems F

rec

and F

corec

can be de�ned in F

ret

. Also the reverse

holds: F

ret

can be de�ned in both F

rec

and F

corec

. It would be an interesting subject for further

investigations to see how the retract types relate to the recursive and corecursive types on the

categorical level.

Theorem 6.2 The systems F

rec

and F

corec

can be de�ned in F

ret

and vice versa.

Proof To de�ne F

rec

in F

ret

take

��:�(�) := ��:8
:(�(
 � �)!�)!�;

Rec

�

:= �
:�f :�(
 � �)!
:�x:�:ox
f;

In

�

:= �x:�(�):i(�
:�f :�(
 � �)!�:f(�(<Rec

�

f; id>))x));

and Rec

�

�g(In

�

x) �!�! g(�(<Rec

�

�g; id>)x) easily follows. To de�ne F

corec

in F

ret

take

��:�(�) := ��:9
:(
!�(
 + �))!
);

Corec

�

:= �
:�f :
!�(
 + �):�x:
:i(���k:k
<f; x>);

Out

�

:= �x:�:ox(�(�))(�
:�f :
!�(
 + �)� �:�([Corec

�

(fstf); id])(fstf(sndf)));

and Out

�

(Corec

�

�g) �!�! �([Corec

�

�g; id])(gx) easily follows.

To de�ne F

ret

in terms of F

rec

or F

corec

, take respectively

��:�(�) := ��:�(�);

i := In

�

;

o := Rec

�

�(�)(�(snd))

(so o(ix) �!�! x) and

��:�(�) := ��:�(�);

o := Out

�

;

i := Corec

�

�(�)(�(inr))

(so again, o(ix) �!�! x.)

205

We can collect the results from Theorems 5.2 and 6.2 and Corollary 5.6 in a picture as

follows. (An arrow from A to B means that the system A can be translated in the system B.)

F

ret

�

�

�

�

�

��

	�

�

�

�

�

� I@

@

@

@

@

@

@

@

@

@

@

@R

F

rec

�

�

-

F

corec

? ?

F

REC

F

COREC

If we translate in F

rec

the type ��:�(�) in terms of the �-type, which is de�ned in terms

of the �-type, we obtain the type ��:8
:(�(
 � �)!
)!
. A similar situation occurs if we

translate in F

ret

a �-type in terms of a �-type, which is de�ned in terms of the �-type: ��:�(�)

becomes ��:8
:(�(
��)!
)!
. Using these double translations, we can deduce the following

facts about the systems F

rec

, F

corec

and F

ret

themselves.

Fact 6.3 1. For � a retract type of 	(�) � 8
:(�(
��)!
)!
 or of 	(�) � 9
:(
!�(
+

�)) �
, � is also a retract type of �.

2. For � a recursive type of 	(�) � 8
:(�(
 � �)!
)!
, � is also a recursive type of �.

3. For � a corecursive type of 	(�) � 9
:(
!�(
 + �)) �
, � is also a corecursive type of

�.

We can also compose the translations to obtain new interpretations of �-types in �-types

and vice versa:

Fact 6.4 1. For �(�) a positive type scheme, we can interpret �-types in F

rec

by taking

��:�(�) and Corec

�

as in 5.2 and

Out

�

:� �x:Rec

�

(�(�))(�(snd))x(�(�))(�
f:�([Corec
(fstf); id])(fstf(sndf))):

2. For �(�) a positive type scheme, we can interpret �-types in F

corec

by taking ��:�(�) and

Rec

�

as in 5.2 and

In

�

:� �x:Corec

�

(�(�))(�(inr))(�
f:f(�(<Rec
f; id>)x)):

References

[B�ohm and Berarducci 1985] C. B�ohm and A. Berarducci, Automatic synthesis of typed

�-programs on term algebras Theor. Comput. Science, 39, pp 135-154.

[Coquand and Huet 1988] Th. Coquand and G. Huet, The calculus of constructions,

Information and Computation, 76, pp 95-120.

206

[Coquand and Mohring 1990] Inductively de�ned types, In P. Martin-L�of and G. Mints

editors. COLOG-88 : International conference on computer logic, LNCS 417.

[Dowek e.a. 1991] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin-Mohring, B. Werner,

The Coq proof assistant version 5.6, user's guide. INRIA Rocquencourt - CNRS ENS

Lyon.

[Girard et al. 1989] J.Y. Girard, Y. Lafont and P. Taylor, Proofs and types, Camb. Tracts in

Theoretical Computer Science 7, Cambridge University Press.

[Hagino 1987a] T. Hagino, A categorical programming language, Ph. D. thesis, University of

Edinburgh.

[Hagino 1987b] T. Hagino, A typed lambda calculus with categorical type constructions. In

D.H. Pitt, A. Poign�e and D.E. Rydeheard, editors. Category Theory and Computer

Science, LNCS 283 pp 140-157.

[Hayashi 1985] S. Hayashi, Adjunction of semifunctors: categorical structures in

nonextensional lambda calculus. Theor. Comp. Sc. 41, pp 95-104.

[Kleene 1936] S.C. Kleene, �-de�nability and recursiveness. Duke Math. J. 2, pp 340-353.

[Lambek 1968] J. Lambek, A �xed point theorem for complete categories. Mathematisches

Zeitschrift 103 pp 151-161.

[Leivant 1989] D. Leivant, Contracting proofs to programs. In P. Odifreddi, editor. Logic in

Computer Science, Academic Press, pp 279-327.

[Mendler 1987] N.P. Mendler, Inductive types and type constraints in second-order lambda

calculus. Proceedings of the Second Symposium of Logic in Computer Science. Ithaca,

N.Y., IEEE, pp 30-36.

[Mendler 1991] N.P. Mendler, Predicative type universes and primitive recursion. Proceedings

of the Sixth Annual IEEE Symposium on Logic in Computer Science. Amsterdam, The

Netherlands, IEEE, pp 173-184

[Newman 1942] M.H.A. Newman, On theories with a combinatorial de�nition of

\equivalence". Ann. of Math. (2) 43, pp 223-243.

[Paulin 1992] Ch. Paulin-Mohring, private communication.

[Parigot 1988] M. Parigot, Programming with proofs: a second order type theory. ESOP '88,

LNCS 300, pp 145-159.

[Parigot 1992] M. Parigot, Recursive programming with proofs. Theor. Comp. Science 94, pp

335-356.

[Reynolds and Plotkin 1990] J.C. Reynolds and G.D. Plotkin, On functors expressible in the

polymorphic lambda calculus. In G. Huet, editor. Logical Foundations of Functional

Programming, In `The UT Year of Programming Series', Austin, Texas, pp 127-152.

[Wraith 1989] G.C. Wraith, A note on categorical datatypes In D.H. Pitt, A. Poign�e and D.E.

Rydeheard, editors. Category Theory and Computer Science, LNCS 389 pp 118-127.

207

Girard's Paradox in lambda U

Leen Helmink, Eindhoven

Abstract

The presentation discusses a computer assisted construction of a proof of Girard's para-

dox in lambda U. Theoretical as well as practical issues will be addressed.

208

Computable interpretation of cross-cuts procedure

Hugo Herbelin (INRIA Rocquencourt and ENS Lyon)

Abstract

In the symmetric sequent calculus of Gentzen, several ways of eliminating cuts are pos-

sible. One of them, known as the cross-cut procedure, enjoys properties of symmetry. We

will give an interpretation of this procedure in computable terms, in the paradigm of proofs

as programs and cuts as communications between these programs. We will show from cho-

sen examples that this sometimes gives more natural programs than the actually known

interpretations of classical sequent calculus for arithmetic, such as LC or T. Coquand's

interpretation in terms of games.

209

Typing in Pure Type Systems

Bert Jutting

Nijmegen

Abstract

In the theory of Pure Type Systems (PTS's) it is (to my knowledge) an open question

whether Expansion Postponement holds. That is: Let ` denote derivability in a PTS and

`

0

derivability in the same PTS where the rule:

conv:

c ` a : A; c ` B : s; A = B

c ` a : B

has been replaced by the rule

red:

c `

0

a : A;A > B

c `

0

a : B

Is it true that c ` a : A) c `

0

a : B for some B with A > B?

Expansion Postponement is, among other things, important for proving correctness of

typing algorithms.

In the talk I will propose an alternative de�nition giving rise to a di�erent derivability

relation `

00

satisfying:

c ` a : A, c `

00

a : A and (A = s or c `

00

A : s)

The importance of `

00

is stressed by the following properties:

1. For `

00

Expansion Postponement holds.

2. For `

00

an easy proof of strengthening is possible, which carries over to ` .

3. A straightforward typing algorithm for ` can be derived from `

00

.

210

Relating Logic Programming

and Propositions-as-Types:

A Logical Compilation

summary

James Lipton

Dept. of Mathematics

University of Pennsylvania

Aug. 15, 1992

Abstract

We analyze logic programs (Horn Clause programs and extensions) informally as speci-

�cations or types in the sense of the Curry-Howard isomorphism, rather than as programs.

Using a realizability interpretation we develop a translation of these clauses to equational

speci�cations. These give rise to various ways of associating non-deterministic terms or

computations with this type that satisfy the logic program as a speci�cation. By adapting a

1956 result of Nerode, (generalizing Herbrand-G�odel computability to term models) we are

able to solve the equational speci�cation directly over the term-model, and produce a (mul-

tivalued) Turing-machine index for the solution. We also de�ne a realizability semantics in

a partial applicative structure over the Herbrand Universe, and consider a non-deterministic

or disjunctive �-calculus . All interpretations are independent of any choice of logic pro-

gramming interpreter. Rather, they transfer control and implementation features of proof

search to control and implementation features of the recursion theorem. Completeness of

the former is mapped to correctness of the latter.

Our translation provides a framework for integrating logic programming directly into a

typed or untyped functional programming environment in a way that preserves the Curry-

Howard content of typing. Our interpretations also provide new completeness theorems

for various classes of logic programs. The results apply to Horn Logic Programs, and the

Miller-Scedrov-Nadathur Uniform logic programming languages.

1 Introduction: Logic Programming as a speci�cation Language

The results in this paper come from exploiting a largely unused uniformity that is present

in most logic programming paradigms: the extraction of a witness to a query is uniform in

the parameters and predicates in the program. By explicitly rewriting a logic program as a

realizability goal , we search not for a speci�c witness, but a function that returns this witness for

every choice of parameters. This reformulation is done �rst in the framework of an abstract form

of the recursion theorem, adapted from [34], and then in terms of realizability over Feferman's

partial applicative structures, where we can formalize logic programming languages, and where

we are guaranteed the existence of the required partial recursive function via the appropriate

�x-point theorem as in [1].

211

What we obtain is a compilation of logic programs into an equational speci�cation of func-

tional code via a generalized logic programming paradigm. The logic program is treated as a

type, the computation process as one of �nding a uniform inhabitant for the type. The entire

development is implementation independent: we obtain not a particular evaluation strategy

but a speci�cation which gives di�erent functional solutions according to di�erent evaluation

sequences. We also de�ne a multivalued realizability which captures the nondeterminism of the

declarative program directly. In this outline we develop one of these paradigms in detail, with

an example, and give a quick sketch of the remaining ones.

1.1 Towards a Realizability Semantics for Logic Programs

In this section we develop an informal notion of realizability for logic programs. We begin with

a logic program P decorated with abstract realizers �, which are taken as atomic evidence that

the clauses are true (because the programmer says so). We �rst consider the �rst-order case:

Horn or First Order Hereditarily Harrop logic programs, whose syntax is de�ned as follows. Let

q ::= > a q

1

^ q

2

q

1

_ q

2

9xq

h ::= a q ! a h

1

^ h

2

8xh

g ::= > a g

1

^ g

2

g

1

_ g

2

9xg 8xg f ! g

f ::= a g ! a f

1

^ f

2

8xf

where a stands for an atomic formula. Then a Horn clause program is a �nite set of closed

h-formulas, and a query (or goal) for such a program is a q-formula (or a �nite set of them).

A First Order Harrop program is a �nite set of closed f -formulas, and a query (or goal)

for such a program is a g-formula (or a �nite set thereof).

In the �rst part of this paper we will be considering an arbitrary Horn or FOHH program

�

1

: h

1

(s

1

) � T

1

(t

1

) (1)

.

.

.

�

m

: h

m

(s

m

) � T

m

(t

m

)

where, s

i

and t

i

are -tuples of terms and where each clause is \decorated" with (abstract)

realizers �

1

; � � � ; �

n

. These realizers supply atomic evidence that the corresponding clauses are

being considered true.

Realizability over the Herbrand Universe Our �rst approach to extracting functional

content from the program P de�ned above in (1) together with a query Q[~u;~v] where the ~u are

parameters and the ~v are variables, is to inhabit the Horn Clause speci�cation directly with

a realizer over the Herbrand Universe. This means �nding a term e from a suitable partial

combinatory structure E(H) de�ned over the Herbrand universe of the program satisfying

e : 8~u9~v [P �! Q(~u;~v):] (2)

As will be shown below, this entails �nding a function ê which, on a suitable domain D,

satis�es the speci�cation

(8~u) (P �! Q[~u; ê(~u)]):

212

We show how to produce a series of recursion equations specifying ê from (2). Variants of

Kleene's [19] and Nerode's [34] recursion theorem guarantee the existence of a solution in the

set of partial recursive functions. We start with an example that shows how we obtain a

speci�cation for a multivalued function which captures the full non-determinism of the original

declarative program seen independently of any choice of an interpreter.

1.1.1 An non-deterministic Example

We consider the realizability interpretation and the induced translations for the following Horn

clause program, P, equipped with \dummy realizers":

� : add(0; X; X): (3)

� : add(s(X); Y; s(Z)) : � add(X; Y; Z): (4)

Which means (see realizability de�nitions (2.5), below)

(8x) �x : add(0; x; x) (5)

(8x)(y)(z)(f)f : add(x; y; z) ! (�xyz)f : add(s(x); y; s(z)) (6)

We trace through the compilation of this program to a speci�cation of the non-deterministic

function f : N! N�N satisfying

f(x)

0

+ f(x)

1

= x

First, we translate this program to the following realizability goal, assigning what we will call

below a h001i template to the predicate add, that is to say, the character of an input to the

third variable, and of an output to the �rst two:

9e (e : 8u9v9w P ! add(v;w;u))

Unravelling this according to the de�nitions of realizability given below (with the notation e

and

b

e for left and right projections of e),

(8u)[eu : P ! add(

b

e

0

u;

b

e

1

u;u)]

i.e.

(8u)(8
)(
 : P ! eu
 : add(

b

e

0

u;

b

e

1

u;u))

Taking
 to be h�; �i from (5) and (6) above, we have

euh�; �i : add(

b

e

0

u;

b

e

1

u;u) (7)

Now, unifying (7) on the third variable (that is to say, unifying on the template h001i) with the

�rst clause of the original program (5), we have:

�u : add(0;u;u) (8)

euh�; �i : add(

b

e

0

u;

b

e

1

u;u) (9)

213

which has a solution

b

e if we choose:

b

e

0

u = 0 and

b

e

1

u = u (10)

as well as euh�; �i = �u. Now, assuming an e exists satisfying (7) we have, by applying the

second clause (5) of the original program:

8u : �[

b

e

0

u][

b

e

1

u][u][euh�; �i] : add(s(

b

e

0

u);

b

e

1

u; s(u)) (11)

and applying (7) to s(u)

8u es(u)h�; �i : add(

b

e

0

s(u);

b

e

1

s(u); s(u)) (12)

where the choice of argument in (11) and (12) is dictated by unifying (7) and (6) on the last

variable. Now (12) has a solution if

b

e satis�es the recursive equations

b

e

0

(s(u)) = s(

b

e

0

u) and

b

e

1

(s(u)) =

b

e

1

u: (13)

as well as the corresponding condition e(su)h�; �i = �[

b

e

0

u][

b

e

1

u][u][euh�; �i] for e. Leaving

aside for the moment the requirements for the evidence e, we have the following conditions for

b

e:

b

e

0

u = 0

b

e

1

u = u

b

e

0

(s(u)) = s(

b

e

0

u)

b

e

1

(s(u)) =

b

e

1

u

(14)

We must be carreful about how we deal with the multivalued character of these equations. Taken

at face value they logically imply the collapse of the underlying Herbrand Universe, since, for

every u, we have 0 =

b

e

0

u = u.

For this reason, we interpret di�erent conditions for

b

e

0

and

b

e

1

disjunctively. Before delving

into our formalized treatment below, we give an informal treatment. Using [] for (non-

deterministic) disjunction, we can write this speci�cation somewhat in the style of ML as:

fun

b

e 0 = h0; 0i (15)

b

e su = [h0; sui hs(

b

e

0

u);

b

e

1

ui] (16)

There is a natural execution model for this speci�cation corresponding to every complete proof

search strategy for the original program, for example a breadth-�rst traversal of the induced

computation tree, until a leaf is found in normal form.

We also obtain a solution to this which captures the non-determinism of the speci�cation

itself by lifting the solution

b

e to a set-valued function ~e (i.e. to the non-deterministic monad

[31]) in the obvious way. Let set be the canonical lifting of functions f : D ! D to maps

set(f) : }(D)! }(D) between the power sets, given by:

set(f)(X) = ff(x) : x 2 Xg:

Then ~e : D ! }(D) is given by

~e 0 = fh0; 0ig (17)

~e su = set([�x:h0; sui �x:hs(p

0

x);p

1

xi])(~eu) (18)

= set(�x:h0; sui)(~eu) [set(�x:hs(p

0

x);p

1

xi)(~eu)

214

where p

0

and p

1

are left and right components of the pairs in ~eu.

These approaches suggest several computational and realizability formalisations, each with

its own �xpoint- or recursion theorem. We sketch one below adapted from Nerode's 1956

dissertation, which is in some sense independent of implementation (i.e. developed in terms of

indices). Several concrete developments of the lambda calculus along these lines are sketched

in the appendix.

1.2 Nerode-Kleene computability over term-algebras

The following development, adapted from Nerode's dissertation, provides an immediately ap-

plicable framework for generating and solving equations along the lines of the example studied

above.

De�nition 1.1 A recursion calculus (a �nite-signature one-sorted equational calculus) is a

triple e = (V; F;C) where V is a set of variables, and F and C are �nite, nonempty sets of

functions and constant symbols, respectively. We will also call (F,C) the e-signature.

The word e-algebraW

e

is the Herbrand Universe of ground terms for the recursion calculus

e.

A �nite set A of equations in the recursion calculus e

0

= (V; F

0

; C) is said to overlay the word

e-algebra W if e = (V; F;C) and F � F

0

. We say such a set of equations distinguishes W if

for any w

1

; w

2

2W ,

A ` w

1

� w

2

) W j= w

1

� w

2

We say A is complete forW if for any function letter f 2 F

0

of arity k and any w

1

; : : : ; w

k

2W

there is a w

k+1

2W such that

A ` f(w

1

; : : : ; w

k

) = w

k+1

We say A is a partial de�nition over W if A overlays and distinguishes W . A is a de�nition

if in addition it is complete.

De�nition 1.2 If A is a (partial) de�nition over the word algebra W and f is a k-ary function

symbol in A, we de�ne the (partial) function

[[f]]

A

: W

k

!W

by [[f]]

A

(w

1

; : : : ; w

k

) = w

k+1

, A ` f(w

1

; : : : ; w

k

) = w

k+1

.

It is easy to see that if A is a partial de�nition then [[f]]

A

is well-de�ned, and is total if A is

complete over W .

De�nition 1.3 The (partial) function g : W

k

!W is de�nable if there is a (partial) de�ni-

tion A with a function symbol f of arity k such that [[f]]

A

= g.

We now extend the notion of recursive function to a term algebra in a completely straightforward

manner:

215

De�nition 1.4 Let e = (F;C) be a �nite signature, where F and C are ordered sets. Then

the similarity type of e is a �nite-support sequence of natural numbers � with �(n) = m i�

there are m function symbols of -arity n. We de�ne a G�odel numbering of the term algebra W

e

(in fact the G�odel numbering induced by any encoding of sequences in N and by the ordering

of F and C) to be a function # : W ! N given by the standard ecoding #f(t

1

; � � � ; t

n

) =

Seq(o(f);#t

1

; � � � ;#t

n

). A numbering of W

e

is a bijection I : N ! W

e

such that such that

there are recursive bijections � and � with � �# = I

�1

and � � I

�1

= #.

De�nition 1.5 Let I be a numbering of the word-algebra W . The (partial) function g : W

k

!

W is recursive over W if there is a recursive (partial) function f : N

k

! N such that the

following diagram commutes:

N

k -

f

N

-

g

?

I

k

?

I

W

k

W

We then have the following theorem, proven in [34]:

Theorem 1.6 The (partial) function g : W

k

!W is de�nable i� it is recursive over W .

The proof also shows that (an index for) the associated partial function f : N ! N can be

uniformly e�ectively computed from (codes for) the equations in a way similar to Kleene's

original development of Herbrand-G�odel computability for partial recursive functions.

1.3 A nondeterministic term-model extension

Let e be a recursion calculus, and W

e

its term model. Then the term model W

p

of the calculus

e

p

= (F[fparg; C[ffailg) obtained by adding one distinguished binary function symbol par and

the constant fail is called the par-extension of W

e

. We call the set of equations A overlaying W

e

a par-extension theory if the signature of A includes the function symbol par and the constant

symbol fail, and if A includes the following equations.

1. (associativity of par)

par(par(x; y); z) = par(x; par(y; z))

2. (failure)

par(fail; x) = par(x; fail) = par(x; x)

3. (lifting) for each f 2

^

F other than par of -arity n > 0

f(x

1

; : : : ; x

j�1

; par(y; z); x

j+1

; : : : ; x

n

) =

par(f(x

1

; : : : ; x

j�1

; y; x

j+1

; : : : ; x

n

); f(x

1

; : : : ; x

j�1

; z; x

j+1

; : : : ; x

n

))

216

Remark: A slight reformulation of the above will give us a syntactic variant of the non-determinism

triple or monad construction (e.g. [31]). Let C

e

be the category of (partial) e-algebras and algebra

homomorphisms. Observe that if B is an e-algebra then so is the algebra B

a

whose carrier jB

a

j is given

by the set of terms

fpar(a

1

; � � � ; a

m

) : a

i

2jBj [ffailg g

where par(a

1

; � � � ; a

m

) is shorthand for par(a

1

; par(a

2

; � � � ; par(a

m�1

; a

m

))). The algebra operations

are induced by lifting (as given in the equations above), with constants a interpreted as par(a; a). Let

T : C

e

! C

e

be a functor de�ned by T (B) = B

a

, with T 's action on morphisms induced by the

corresponding notion of lifting. Then let �(B) : T

2

(B)! T (B) be given by

par(par(a

1

; � � � ; a

m

); b) 7! par(a

1

; � � � ; a

m

; b)

and �(B) : B ! T (B) by a 7! par(a; a) or par(a; fail). Then (T; �; �) is a monad.

The aim of this term-model construction is to reformulate equations of the sort produced

in the example above (e.g. 14) which failed to distinguish the program signature, i.e. led to a

collapse of the underlying Herbrand universe, as equations over a par-extension which constitute

a legitimate partial de�nition over that extension. All that needs to be shown is that all the

necessary de�nitions used in theorem 1.6 lift to the new structure.

Lemma 1.7 Let I be a numbering of an e-term algebra W

e

. Then there is a numbering I

p

of

its associated par-extension and a pair of recursive injections � and � from N to N such that

for all a in W

e

I

�1

(a) = �I

�1

p

(a) and I

�1

p

(a) = �I

�1

(a)

Since the par-extension of W

e

is just another term-algebra, the main theorem 1.6 states that a

function is de�nable over the par-extension of W

e

i� it is partial recursive.

1.3.1 Multivalued Turing Machines

In the next section we de�ne a procedure which when applied to a logic program and uniform

query P ! Q produces a set of equations A which give partial de�nition over the par-extension

of the Herbrand universe of P . By the main theorem of this section, every A -de�ned function

f has an associated Turing-machine index e

f

in the sense of de�nition (1.5). We now de�ne the

associated multivalued Turing machine R

f

in the obvious way:

R

f

(n) = par set(e

f

(n))

where

par set(n) = fI

�1

(a) : a " I

p

(n)g

and where the relation " is given by

x " par(y; z), x = y _x"z:

Our development is not particularly di�erent than de�ning r.e. set valued recursive functions by

associating, with any partial recursive f : N! N, the function F : N! < given by F (x) = S

e

where S

e

is the domain of the e-th Turing machine. The only signi�cant di�erence is that the

numbering of sets is more natural since it is induced by (G�odel numbering of) terms used to

de�ned sets of values.

217

generic variables

We must also deal with fresh constants or variables introduced by the generic step for SLDR-

computation (see below) or by equations induced by unbalanced programs: those with occur-

rences of a free variable in the head of a clause that does not also occur in the tail. Thus, we

may need to generate equations of the form e.g.

ea = y (19)

where a is a constant, or a term in which y is not free. In order to solve these over par-extensions

we must include special generic-variable terms gen(c

i

) (i > 0) where the c

i

are fresh constants.

Then equations like (19) are rewritten

ea = gen(c

i

)

where c

i

is the �rst such constant not already used. When we lift the partial recursive functions

computed via theorem (1.6) to nondeterministic functions, we interpret gen(c

i

) as the set of

all terms over the original Herbrand model. These generic variables appear as uppercase logic

variables in the lambda calculi introduced in the appendix.

1.3.2 Term-models with choice operators

A useful variant of the term-model construction just given, is the introduction of ternary function

symbols

cho(�; a; b)

in lieu of par(a; b), with � an \unspeci�ed" choice index 2 f0; 1g. cho satis�es the additional

equations

cho(0; a; b) = a cho(1; a; b) = b

This indexing device can also be added to the disjunctive lambda calculus (see appendix) to

preserve unrestricted �-reduction and the Church-Rosser property. For convenience, we can

extend this in the obvious way to terms

cho(�; a

1

; � � � ; a

n

)

where � is in f0; 1; � � � ; n � 1g and e.g. cho(1; a; cho(1; b; c)) = cho(2; a; b; c). We will call an

assignment of speci�c values to all � in a choice term-model an instantiation of the model,

and by abuse of language, we will also call them instantiations of the associated par-terms in

the par-extension. With such instantiations, the multivalued functions computed above now

become single valued functions over the Herbrand Universe. These are also called instances of

the corresponding par- or multi-valued functions.

2 SLDR-computation of Equations

We now describe the SLDR-computation algorithm for generating equations ovber the par-

extension of the Herbrand Universe (or a generic extension).

De�nition 2.1 (F - uni�cation) Let � be a signature and F a set of function symbols disjoint

from those in �. Let s and t be terms over the signature � [F . A term s over this signature

218

is called a �-term (or just a pure term) if no symbol in F occurs in s, otherwise it is called an

F -term. An F -term s is said to be rigid, or in head form if s is e(t

1

; � � � :t

n

) for some e 2 F .

The set C (s; t) of F -uni�cation constraints for hs; ti is a �nite set set of equations

de�ned according to the structure of s and t as follows:

Case 1. s and t pure: then C (s; t) is the equational representation of the most general uni-

�er of s and t: namely a �nite set of basic equations, i.e.a set of equations of the

form f� � � x

i

= �

i

� � �g where the x

i

are variables not occurring in any of the terms �

j

,

representing the substitution x

i

7! �

i

.

Case 2. s or t F -terms: If either s or t is rigid, C (s; t) � fs = tg. Otherwise we consider

the usual cases found in �rst-order uni�cation:

� s = f(s

1

; � � � ; s

n

) and t = a or t = g(t

1

; � � � ; t

m

) where a; f; g are in � and f is

distinct from g: then C (s; t) = fs = fail; t = failg.

� s = f(s

1

; � � � ; s

n

) and t = f(t

1

; � � � ; t

n

) where f 2 � : then C (s; t) =

S

C (s

i

; t

i

)

(with the proviso that if fail occurs in C (s; t) then this is equivalent to C (s; t) =

ffailg).

any basic equations in C (s; t) contributed as a result of case (1) will be called pure uni�cation

constraints.

Scheduling We do not go into the details of scheduling here. Since the compilation procedure

below always terminates, bad scheduling cannot cause divergence. Let us remark, however that

the development is in the style of constraint logic programming, so that failure of uni�cation

may not be noticed unless the generated equations are periodically analyzed for consistency

with respect to the (decidable) �rst order theory of equality over the Herbrand Universe. (Iden-

tities involving introduced function symbols never introduce inconsistencies). For example, an

attempt to unify Q(f(x)) and Q(y) in the presence of the constraint fy = g(a)g may result

in success followed by the expansion of the constraint set to fy = g(a); y = f(x)g which must

eventually generate failure. In prolog, this happens at uni�cation time, and there is no rea-

son why this could not be done with SLDR-resolution. Then we must modify the de�nitions

above appropriately to include F - C - uni�cation of s and t, i.e. uni�cation in the presence

of constraints C . We just apply C to s and t prior to carrying out F -uni�cation.

We now describe the SLDR-computation process. First a few conventions regarding intro-

duction of function symbols and scheduling.

Introduction of function symbols: We make the following assumptions on the predicates,

to facilitate their functional interpretation: all unary predicates P (a) are treated as predicates

in two variables,of 2 variables P (a; true) so that the associated function e

P

satis�es e

P

(a) =

true when P (a). 0-ary predicates are just treated as Boolean constants. n-ary predicates

Q(t

1

; � � � ; t

n

) are assigned an input-output template: a binary string of length n de�ning some

slots as inputs, and the remaining ones as outputs, i.e., as components of the associated function

value. Because of the inherently relational nature of the induced multivalued equations, there

is no need to consider more than one template per predicate and (with the exception of the

top-level query) no reason to pick one over another. The equations generated by the SLDR-

procedure below will work for any choice. For e�ciency in solving these equations and ease of

219

representation, it may prove useful to introduce more than one function for a given predicate

corresponding to di�erent templates, (e.g. to associate subtraction with add(in

1

; out; in

2

) and

addition with add(in

1

; in

2

; out)), but this can be done at the time of solving the equations, and

it is not required for the theoretical development or the results below .

In what follows, we will describe the local state of a program � : P with distinguished

clause C, current goals �

1

: Q

1

; : : : ; �

n

: Q

n

, equations C as a node on the SLDR tree with the

notation

h C ; � : P ; C ` Q

1

; : : : ; Q

n

i

and we show how to develop the subsequent nodes of the tree by induction on the structure of

the current query Q

1

.

De�nition 2.2 Let P be a �rst-order program with assigned realizer �̂, and suppose one of the

clauses of P is

� : T (t)! Q[r; s]

where [r; s] is any breakdown and rearrangement of the predicate Q(t

1

; � � � ; t

n

) (e.g. Q(a; b; c)

with x = b and y = (a; c)). Further suppose that the current query is Q[x; y] i.e. the current

state is

h C ; � : P ; � : T (t)! Q(v; s) ` Q[x; y]i

and that the predicate letter Q has not already occurred as a goal. Then, we introduce a function

symbol e (or e

Q

), rewrite the current state of the program as

h C ; � : P ; � : T (t)! Q(v; s) ` e�̂ : Q[u;

b

eu]i

Then the following is the SLDR-reduction step backchain:

h C ; � : P ; � : T (t)! Q[v; s] ` e�

0

: Q[u;

b

eu]i

#

h C [f�;

b

e(u) = s; e�

0

= �g; � : P `
 : T (t)i

where � is the set of pure uni�cation constraints (as de�ned above in 2.1) generated by F -

uni�cation of Q[v; s] and Q[u;

b

eu].

For the sake of thoroughness we have shown how to process the evidence (e.g. e above) along

with the witnesses. As remarked above, for self-realizing classes of formulas there is no point

to carrying along this extra information, so we omit these terms in the remaining proof steps

1

We assume that the program is written in such a way that there is never more than one

clause with a given predicate occurring in the head. Any logic program can be so rewritten by

the use of disjunction in the tail of a clause, and the possible addition of equational goals. For

example

(Q(s) � S)^ (Q(t) � T)

can be rewritten to

Q(x) � ([x = s; S]_ [x = t; T]):

for a fresh (vector) variable x.

1

their sole purpose here, other than to give another motivation for considering hereditarilky self-realizing

classes of formulas a logic programming languages, is to make possible the treatment of more general classes

via the generation of realizability constraints. If the program is not self-realizing, it is only true in the induced

realizability model. But this will be taken up elsewhere!

220

De�nition 2.3 Let P be as above and suppose a goal is of the form S(s)_ T (t). The following

is the SLDR-reduction step co-satisfy

h C ; P ` S _T i

. &

hC ; P ` Si h C ; P ` T i

The steps corresponding to all the remaining ones in e.g. FOHH logic programming, e.g.

augment and generic in [24] remain unchanged. augment is

h C ; P ` A! Bi

#

h C ; P ; A ` Bi

and generic

h C ; P ` 8xAi

#

h C ; P ` A(c)i

where c is a fresh constant. The most important step in the SLDR derivation of equations is the

recursion step, which occurs every time a goal, e.g. Q(t

1

; � � � ; t

n+m

) occurs for a second time

on the same path of an SLDR-tree. Then a witnessing function e

Q

has already been introduced

for it, with the condition

8Q(x

1

; � � � ; x

n

; (e

Q

(x

1

; � � � ; x

n

))

1

; � � � ; (e

Q

(x

1

; � � � ; x

n

))

m

)

so the goal is immediately satis�ed , with the corresponding F -uni�cation equations added to

C :

recursion

h C ; P ;` Q(t

1

; � � � ; t

n+m

)i

#

h C [(

n

[

i=1

C (x

i

; t

i

)) [(

m

[

j=1

C ((e

Q

(x

1

; � � � ; x

n

))

j

; t

j

))P ;` i

The search terminates when every goal on the right of the turnstile has a set of recursion

equations specifying the corresponding realizer in C . Termination depends only on the predicate

letters occurring in (a �rst-order) program. Call a predicate letter A active if it has not yet

recurred in the sense of the recursion step above. Then, a give predicate B can only occur on

the right of a turnstile if:

� it has never occurred before,

221

� it recurs on some path for the �rst time

� it is recurring again on some path because it is a subgoal associated with an active goal

A (e.g. � B;C

1

; � � � ; C

n

` A), for if A were recurrent we would satisfy it using recursion

rather than backchain.

Thus the number of recurrences of an inactive letter is bounded by 1+ the total number of

predicate letters in the program. We omit the straightforward (but tedious) details in this

summary.

In particular, termination is guaranteed irrespective of termination of SLD resolution, even

if the original program never halts for any input!, in which case a solution will be a code or term

denoting the totally divergent function, e.g. a least-�x-point solution to the equation e = e.

We also leave for a fuller development of this paper a description of the compilation of

the multivalued equations for all introduced function variables. Essentially, the equations on

di�erent paths through a node of an SLDR-tree are processed separately and then merged via

disjunctive expressions

êx = [t

1

� � � t

n

]

or using the formal terms in a par-extension of the Herbrand Universe. The particular par-terms

that arise are clearly determined by the order in which the equations on di�erent branches are

processed.

2.1 Semantics and correctness

Formalizing Realizability and computation over a Herbrand Universe

We will let L = L (P) denote the language of the logic program. Then de�ne H

P

to be

the Herbrand Universe of the program (the set of ground terms over L). We now build a

partial applicative theory around H

P

or its associated par-extension along lines similar to e.g.

([1], [40]). We will take Beeson's formulation of Feferman's theory APP (which Beeson calls

PCA+), with a primitive unary post�x predicate # for \terms that denote", together with the

standard partial combinators s and k, pairing and unpairing, a unary integer sort N and a 4-ary

de�nition by integer cases

2

operator d. The key results we will need here about APP are that

it satis�es combinatory completeness (admits lambda abstraction), and Kleene's (single and

double) recursion theorems, admits \strong" de�nition by cases, and satis�es the numerical

and term existence property. See ([1],or [40]) for details.

De�nition 2.4 Let P be a (Horn or FOHH) logic program decorated with abstract realizers

�̂ = h�

1

; : : : ; �i. Then we de�ne the associated applicative theory E(H

P

) extending APP to

include the following:

� constants c; f for every constant c and n-ary function symbol f in L . We call these

\symbols imported from L ", and also denote them (c)

�

and (f)

�

. We also include the

abstract realizers �

i

directly as constants.

� constants t for every ground term t from L . This means that e.g. for constants a; b; c

and function symbols f; g imported from L the terms f(a,g(b,c) and

((((fa)g)b)c)

def

� App(App(App(App(f; a); g); b); c)

2

dxyzw � if x = y then z else w

222

are syntactically distinct objects in E(H

P

) , (although they are identi�ed via new axioms

below).

� A unary predicate H denoting the universe of the interpretation.

� for every term t and function symbol f imported into APP from H

P

, and for each

abstract realizer �

i

, the axioms

t #; H(t); f # �

i

(1 � i � n)

and for each n-ary function symbol f and terms t

1

; : : : ; t

n

imported from L ,

(ft

1

) #; (ft

1

)t

2

; # � � � ft

1

� � � t

n

= (f(t

1

; : : : ; t

n

))

�

� The constant fail together with the axiom fail #.

� All schemas in APP are to be extended to the new terms

(e.g. t # ^8x A(x) ! A(t) for each term t).

We extend the �-embedding of terms to formulas in the obvious way:

p(t

1

; : : : ; t

n

)

�

= p((t

1

)

�

; : : : ; (t

n

)

�

), (' � �)

�

= (')

�

� (�)

�

for �

2

f!; ^ ;_g, etc. We de�ne

2

to

be E(H

P

) together with the embedded program itself (i.e. in the form f(theta)

�

: �

2

P g) as a

set of nonlogical axioms.

We now develop realizability style semantics over the applicative theories just de�ned in a

manner analogous to e.g. [9, 1, 40], but restricting ourselves to interpreted formulas from the

language of the original program. Although we have carried out this interpretation in order to

have one theory to discuss both program and evidence, one should perhaps think of this also

as a realizability with a distinct object language, namely that of the program, and a realizing

metalanguage, namely E(H

P

) or E(P) .

De�nition 2.5 (Syntactic Realizability over E(H

P

)) For a term t of E(H

P

) and a for-

mula � over the language of the original program L , we de�ne the binary relation t : �,

(t realizes �) by cases and by induction on the structure of � as follows:

�

i

: � if � is the i-th clause of the program

t : � ^'

def

� p

0

t : � ^p

1

: '

t : � _'

def

� N(p

0

t)^ (p

0

t = 0! p

1

t : �)^ (p

0

t 6= 0! p

1

t : ')

t : � ! '

def

� (8�)[� : � ! t� : ']

t : (9

x

2

D

)�(x)

def

� D(p

0

t)^p

1

t : �[x=p

0

t]

t : (8

x

2

D

)�(x)

def

� 8u D(u)! tu # ^ tu : �([x=u])

We now can state our main representation theorem for �rst-order logic programs. We use

the following notational convention. If t is a term in E(H

P

) , we write t = ht

1

; : : : ; t

n

i to denote

iterated pairing with association to the right. Thus p

0

t = t

1

, p

0

(p

1

t) = t

2

, etc.

Theorem 2.6 Let P be a �rst-order program, with generic query �[u; v]. Then

223

1. Any instance e of a SLDR-computed term e in E(H

P

) provably realizes the program in

the sense that for some D de�nable in E(H

P

) :

E(H

P

) ` e : (8~u

2

D)(9~v

2

D)(P ! �[~u;~v])

2. In particular, there is a term t = ht

1

; : : : ; t

n

i in E(H

P

) which is (the *-image of) an

instance of an SLDR computed term and which maximally satis�es the program as a

speci�cation in the sense that for any input u in H for which

P ` 9~v�[~u;~v]

we have

E(H

P

) ` (P ! �[~u; t~u])

Such a witnessing term t is faithful to the program in that

� whenever (t

i

u

1

� � � u

m

) # the values (t

i

u

1

� � � u

m

) are (modulo the *-translation between

language and metalanguage) correct answers for the original program H .

� whenever values v

1

; : : : ; v

n

exist for a set of inputs u

1

; : : : ; u

m

,

we have (t

i

u

1

� � � u

m

) #.

The theorem follows from the fact that all logic programming languages considered here are

self-realizing classes of formulas(see e.g. [1, 40]). Thus whenever

(P ! �[u

1

; : : : ; u

m

; (t

1

u

1

� � � t

1

u

m

); : : : ; (t

n

u

1

� � � t

n

u

m

):])

is realized provably in E(H

P

) , it is provable, and conversely. It is shown in e.g. [1] that all

the key properties of APP are preserved in extensions by self-realizing theories, including the

soundness of most realizability notions (in particular, ours), the existence property, and the

recursion theorem.

It is clear that the structure of SLDR-computation is geared towards preserving the com-

putational content of the logic programs without selecting an arbitrary evaluation strategy. To

make this precise we need to compare proof search strategies (selection and branching rules) with

evaluation strategies of the resulting terms. The notational machinery for this is cumbersome

and is omitted here, although the results and ideas are straightforward.

Corollary 2.7 Suppose terms e and t from the theorem above are instances of Nerode-Kleene

solutions to a �nite set of equational constraints C over the disjunctive term calculus obtained by

SLDR-computation. Then these terms preserve the computational content of the logic program

in the sense that every fair evaluation instantiation strategy for the resulting terms in a choice-

extension of the Herbrand model corresponds to a complete proof search strategy for the logic

program.

3 Other realizability interpretations

3.1 Adding a Domain or Type variable: Constraint Logic programming

We provide a brief sketch of the way a modi�ed realizability enables us to capture constraint

logic programming and at the same time ensure a total realizability witness, by constraining

224

the domain of the computed realizer. The idea is to formally add an existentially quanti�ed

domain variable D when formulating the realizability goal for P :

e : 9D(8u

2

D)(9v

2

D)(P ! Q(u; v)):

This formulation does not require a partial applicative structure, and can be developed in total

type theoretic frameworks such as, e.g. Martin-L�of type theory [5, 40, 1, 28].

It can also be developed using Kreisel-Troelstra realizability over HAS or IZF (see e.g. [25]). In

this case constraints are added to the list of goals to be solved, and determine the instantiation

of the variable D.

3.2 A Kripke model for �rst-order logic programs

We can capture the notion of partial realizability of logic programs formalized directly over the

Herbrand model using Nerode-Kleene computability by considering pairs (e;D) where D is a

subset of the Herbrand Universe on which e converges as follows.

We de�ne a Kripke model K with the following carrier set:

K =

[

K

~x;~y

where K

~x;~y

= f(e;D; ~x; ~y) : 8~u

2

D e~u #g

where ~x; ~y range over all tuples of variables x

1

; : : : ; x

k

and x

k+1

; : : : ; x

k+m

(n;m > 0) and with

order given by (e;D; ~x; ~y) � (e

0

;D

0

; ~x; ~y) if e extends e

0

(i.e. 8xe

0

(x) #! ex # ^ e

0

(x) = ex)

and D is a subset of D. Nodes (e;D; ~x; ~y) may only force atomic formulas with free variables

matching the tuples ~x; ~y. Atomic forcing is given by

(e;D; ~x; ~y) k�A[~x; ~y] , 8~u 2 D P ` A[~u; e~u]

where e~u is a tuple of length equal to ~y . We introduce the following notion of cover: The set

S � K is a cover of (e;D; ~x; ~y) if for every (e

0

;D

0

; ~x; ~y) in S, (e

0

;D

0

) is above S and D �

S

D

0

2S

.

Then we de�ne forcing of disjunctions via covers (see e.g. [40]) and obtain a model in which for

all �rst-order goals A

(e;D; ~x; ~y) k�A[~x; ~y] , 8~u 2 D P ` A[~u; e~u]

Using this semantics we obtain another completeness theorem for ther SLDR translation (pro-

vide(1 27 16 1) d P is assumed to be Horn or Hereditarily Harrop): every node (e;D; ~x; ~y) in

K forcing a query Q[~x~y] is extended by some instance of an SLDR-computed term e

0

, and every

SLDR-computed term occurs in a node of K .

3.3 Realizability by multivalued functions

As we illustrated by example above, we can also choose constructive set theory (IZF) as our

metatheory, with an applicative structure embedded in it, as in e.g. McCarty's ([25]). We are

then able to construct the realizability interpretation of IZF as a basic model, (also known as the

realizability universe, or {with some variation{the e�ective topos, see e.g. [16]). Our realizers

live in this model, but will not be the terms of the formalized applicative structure. They

are sets and multivalued functions de�nable in IZF, with the following possible realizability

de�nitions induced by term realizability : over the logic program, which we call strong and weak

realizability (

s

�

and

w

�

). Strong realizability by sets of realizers is just

e

s

�

�

def

� (8x

2

e)(x : �)

225

Weak realizability is as follows. Conjunction and implication and existence are as before. The

interesting clause is disjunction.

e

w

�

� _'

def

� (8x

2

e)[(x : �)_ (x : ')]

and

e : 9x�(x)

def

� (8�

2

e)(�

0

: �(�

1

)):

Towards a non-deterministic realizability of logic programs

If we use the more syntactic formulations of multivalued functions described above and in the

appendix, then order of the terms, and the possible presence of a fail token suggest more complex

de�nitions, to capture negation as failure

[t

1

t

2

] : � _'

def

� t

1

: �

?

^ t

2

: '

?

^ (t

1

= fail! t

2

: ')^ (t

2

= fail! t

1

: ')

where

t : (�)

?

def

� t : � _ t = fail

and where for any predicate Q(x

1

; � � � ; x

n

), Q[x

i

=fail] is true. We are able to obtain an analogue

of theorem 2.6 for multivalued realizability, discussed in the [21].

4 Conclusion

Using realizability interpretations of logic programs we can translate them into disjunctive

terms that (weakly) inhabit these programs as types, or speci�cations in the Curry-Howard

sense. These translations maintain the declarative meaning of the program while leaving control

features untouched. These are tranferred to the evaluation-control problems: the way in which

the recursion theorem and disjunctive branching conditions are evaluated in the target model.

This points to the possibility of studying control features of logic programming in the context

of functional programming with nonlocal control operators. It also gives a natural way of

associating domain-theoretic interpretations to logic programs. Our translations also transform

logic programs into �rst and higher order constraints over various kinds of applicative structures.

This also permits the formalization within logic programming itself of constraint solving in a

new way. Many new questions need to be addressed here: which constraints generated by

logic programs in the style discussed here have solutions over di�erent typed calculi. Can we

identify a (typed) logic programming language corresponding to various subrecursive classes?

How can we modify our realizability calculus to capture non-local control more e�ciently and

clearly? Perhaps most importantly of all, our work suggests that a major task ahead of us is to

understand equation and constraint-solving (together with feasibility questions) over applicative

structures along the lines initiated by Statman and Tronci ([38, 39]). This work must combine

type inference and simultaneous constraint solving. This issue is discussed in more depth in

[21].

In particular, higher order programming is likely to require the simultaneous solution of

domain equations and constraint sets over continuous or computable functions on the indicated

domain.

226

Appendix

The disjunctive calculus

Following the example computed earlier, we can extend the term structure of the lambda calculus

or of a partial combinatory calculus such as APP to include disjunctive terms [t

1

t

2

]. We also

consider the addition of generic or logic variables X (which can also be thought of as labelled

contexts) standing for all possible (non-disjunctive) instances. We consider two developments

here: pure disjunctive calculus

t ::= x X (t

1

t

2

) �x:t [t

1

t

2

]

indexed disjunctive calculus

t ::= x (X)

�

(t

1

t

2

) �x:t [t

1

�

t

2

]

The second calculus allows us to reason about disjunctive lambda terms with a \generic" evalua-

tion index � which is assumed to select one of the disjuncts, which admits full-blown � reduction.

In the pure calculus we must lift disjunctions to the top (using rule 22 and rule 30 prior to beta

reducing with rule 23. We now give reduction rules for both calculi. The optional rules are

included to better handle the simpli�cation of functions computed from logic programs, but do

not seem eessential for the lambda calculi themselves.

3

pure disjunctive calculus

[s t]u ; [su tu] (20)

(�x:s)u ; s[x=u] u non-disjunctive (21)

�x: [s t] ; [�x:s �x:t] (22)

(�x:s) [u v] ; [(�x:s)u (�x:s)v] (23)

h [u v] ; zi ; [hu; zi hv; zi] (24)

hz; [u v] i ; [hz; ui hz; vi] (25)

indexed disjunctive calculus

[s

�

t]u ; [su

�

tu] (26)

(�x:s)u ; s[x=u] (27)

h [u

�

v] ; zi ; [hu; zi

�

hv; zi] (28)

hz; [u

�

v] i ; [hz; ui

�

hz; vi] (29)

3

The author has recently learned of substantial work in disjunctive calculi by Piperno, Liguori, and Dezani,

among others, which may provide a better framework for nondeterministic term extraction from logic programs.

227

optional rules

f [u v] ; [fu fv] (30)

[u fail] ; u (31)

[fail u] ; u (32)

[u u] ; u (33)

References

[1] Beeson, M. J. [1985a], Foundations of Constructive Mathematics, Springer-Verlag, Berlin.

[2] Beeson, M. J. [1985b], \Proving programs and programming proofs", in Logic, Methodology, and

Philosophy of Science VII, North-Holland, Amsterdam.

[3] Cerrito, Serenella, [1992], \A linear axiomatization of negation as failure", in the Journal of Logic

Programming , 12, 1-24, Elsevier.

[4] Constable, R. L. and Howe, D. J., [1990], \Implementing Metamathematics as an Approach to

Automatic Theorem Proving", in Formal Techniques in Arti�cial Intelligence, R. Banerji, ed.,

North-Holland.

[5] Constable, R. L., et al [1986], Implementing Mathematics with the NUPRL Development System,

Prentice-Hall, N.J.

[6] Constable, R. L. [1983], \Programs as proofs", Information Processing Letters, 16(3), 105-112.

[7] Coquand, T. [1990], \On the analogy between propositions and types", in: Logic Foundations of

Functional Programming, Addison-Wesley, Reading, MA.

[8] Coquand, T. and G. Huet [1985a], \Constructions: A higher order proof system for mechanizing

mathematics", EUROCAL 85, Linz, Austria.

[9] Feferman, S. [1975], \A language and axioms for explicit mathematics", in: Algebra and Logic,

Lecture Notes in Mathematics No. 450, pp. 87-139, Springer, Berlin.

[10] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic programming lan-

guage. In Ninth International Conference on Automated Deduction, pages 61 { 80, Springer-Verlag,

Argonne, IL, May 1988.

[11] Fitting, M. [1983], Proof Methods for Modal and Intuitionistic Logics, D. Reidel, Dordrecht, The

Netherlands.

[12] Gri�n, T [1990], \The Formulas-as-Types notion of control", in the proceedings of the 17th POPL

conference.

[13] Harper, R., MacQueen, D., Milner, R., [1986], Standard ML, Technical Report, LFCS-86-2, Labo-

ratory for the Foundations of Computer Science, University of Edinburgh.

[14] Hayashi, S.and H. Nakano [1989], PX: A Computational Logic, The MIT Press, Cambridge.

[15] Howard, W. A. [1980], \The Formulae-as-types notion of construction", in: Seldin, J.P. and J. R.

Hindley (eds.), To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism,

Academic Press, New York, 479-490.

228

[16] Hyland, J. M. E. [1982], \The e�ective topos". in: Troelstra, A. S. and D. S. van Dalen (eds.),

L.E.J. Brouwer Centenary Symposium, North-Holland, Amsterdam.

[17] Huet, G., [1990], ed. Logic Foundations of Functional Programming Languages, proceedings of a

symposium from the Year of Programming at the University of Texas at Austin, 1986, Addison-

Wesley, Reading, MA.

[18] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proceedings of the 14th ACM Sympo-

sium on the Principles of Programming Languages, 1987.

[19] Kleene, S. C. [1952] Introduction to Metamathematics , North Holland.

[20] Lipton, J., [1991], \Constructive Kripke Semantics and Realizability", in the proceedings of the

Logic for Computer Science conference held at the Math. Sci. Research Institute, Berkeley, Nov.

1989.

[21] Lipton, J. [1992], \Relating Logic Programming and Propositions-as-Types", full version of this

summary, to appear as a technical report, University of Pennsylvania.

[22] Lloyd, J. W., [1987], Foundations of Logic Programming, second ed., Springer-Verlag.

[23] Dale Miller and Gopalan Nadathur. �Prolog Version 2.7. July 1988. Distribution in C-Prolog and

Quintus sources.

[24] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation

for logic programming. 1988. To appear in the Annals of Pure and Applied Logic.

[25] McCarty, D. C. [1986], \Realizability and recursive set theory", Annals of Pure and Applied Logic

32, 11-194.

[26] van Dalen, D. [1986], \Intuitionistic logic", in The Handbook of Philosophical Logic, Vol. III, 225-

339, D. Reidel, Dordrecht.

[27] Martin-L�of, P. [1982], \Constructive Mathematics and Computer Programming", in Logic, Method-

ology and Philosophy of Science IV, North Holland, Amsterdam.

[28] Martin-L�of, P. [1984], Intuitionistic Type Theory, Studies in Proof Theory Lecture Notes, BIB-

LIOPOLIS, Napoli, Italy.

[29] Mitchell, J. and E. Moggi [1987], \Kripke-style models for typed lambda calculus", Proceedings

from Symposium on Logic in Computer Science, Cornell University, June 1987, IEEE, Washington,

D.C.

[30] Moggi, E. [1989] \Computational Lambda Calculus and Monads" in Proc. 4th IEEE Symposium

on Logic in Computer Science, Asilomar.

[31] Moggi, E. [1990] \Notions of computation and monads". technical report, University of Edinburgh.

[32] Murthy, C., [1990], \Extracting Constructive Content from Classical Proofs: Compilation and the

Foundations of Mathematics", Ph. D. dissertation, Cornell University.

[33] Murthy, C., [1990], \An Evaluation Semantics for Classical Proofs" 1991 LICS Proceedings.

[34] Nerode, A, [1956], Composita, Equations, and Recursive De�nitions , Ph. D. Dissertation, University

of Chicago.

[35] Nerode, A. and Shore, R. [1992], Logic and Logic Programming , to appear.

[36] Odifreddi, G. [1989], Classical Recursion Theory, North-Holland, Amsterdam.

229

[37] Robinson, J. A. [1965], \A machine-oriented logic based on the resolution principle", Journal of the

ACM, V.12, 23-41.

[38] Statman, R., [1982], \Completeness, Invariance and lambda-de�nability", JSL.

[39] Tronci, E, [1991], \Equational Programming in Lambda Calculus", 6th LICS proceedings.

[40] Troelstra, A. S. and D. van Dalen [1988], Constructivism in Mathematics: An Introduction, Vol. II,

Studies in Logic and the Foundations of Mathematics, Vol. 123, North-Holland, Amsterdam.

[41] Troelstra, A. S. [1973], Metamathematical Investigation of Intuitionistic Arithmetic and Analysis,

Mathematical Lecture Notes 344, Springer-Verlag, Berlin.

230

Programming with Streams in Coq

A case study : the Sieve of Eratosthenes

Fran�cois Leclerc

�

CRIN URA CNRS 262

BP 239

54506 Vandoeuvre-les-Nancy cedex, France

Christine Paulin-Mohring

y

LIP-IMAG URA CNRS 1398

ENS Lyon, 46 All�ee d'Italie

69364 Lyon cedex 07, France

August 92

Abstract

A parallel data
ow program can be seen as a network of functional transformers over

in�nite lists (also called streams). G. Kahn and D. MacQueen [6, 7] proposed this paradigm

in order to apply standard technics of semantics for proving the correctness of concurrent

programs. On the other hand, type theory and the paradigm of proofs as programs has

proved to be useful for the justi�cation of functional programs. We investigate the program-

mation with in�nite lists in strongly typed lambda-calculus by studying the example of the

sieve of Eratosthenes. We develop this example both in system F and in the Calculus of

Constructions where certi�ed programs are extracted from constructive proofs. This study

suggests suitable representations for the type of Streams in the system Coq [2].

1 Introduction

1.1 Programming with proofs

Usual programs involve inductive structures as natural numbers, lists or trees. We know quit well

how to systematically represent these structures in strongly typed lambda-calculus as Girard's

system F . We also know which induction principles are needed to reason about these programs

in a system like Coq for instance.

An alternative possibility in Coq is to use realisability to extract correct programs from

intuitionistic proofs of existential statements. From a proof of 8x:P (x)) 9y:Q(x; y) the system

Coq will extract a functional program f (written in a ML like language). We know from the

metatheory that 8x:P (x)) Q(x; f(x)) holds and consequently the program f is certi�ed.

Proving interactively 8x:P (x)) 9y:Q(x; y) is like developing simultaneously the program and

its proof of correctness.

�

Francois.Leclerc@loria.fr

y

cpaulin@lip.ens-lyon.fr

This research was partly supported by ESPRIT Basic Research Action \Logical Frameworks" and by MRT

Programme de Recherche Coordonn�ees \Programmation avanc�ee et Outils pour l'Intelligence Arti�cielle". It

started during F. Leclerc's DEA practical period at LIP in spring 91.

231

1.2 Programming with coinductive types

The representation of coinductive types in strongly typed lambda-calculus has been less in-

vestigated. However an in�nite list can be represented as a process for generating in�nitely

many elements. Such in�nite lists, also called streams can be used to model concurrency in a

functional way making the proofs of correctness easier to achieve.

A program which acts as a stream transformer can be written in a ML-like language with

a lazy evaluation of constructors. In a language with full polymorphism like system F or

the Calculus of Constructions, it is possible to internally represent the type of streams. We

experiment these systems by applying the paradigm of proofs as programs to the construction

of streams. This paper presents a complete development of various versions of the sieve of

Eratosthenes in Coq.

1.3 Notations

Our aim is to give the main ideas for the constructions of the programs. We will not be too

formal but the examples were developed completely formally in the Coq system.

We shall use terms either from the system F or from the Calculus of Constructions, with

the following notations. Quanti�cation is written as 8x : M:N , implication is written M ! N

which associates to the right. The lambda-abstraction is written as �x : M:N or �X : K:M for

an abstraction over types variables, the application of term M to term N is written (M N), it

associates to the left, we shall sometimes omit the external parentheses. The type annotation

after the \:" in quanti�cation or abstraction will be omitted when it is clear from the context.

We shall write M ' N when the terms M and N are convertible.

The same names will be used for di�erent constructions but in that case also the ambiguity

can be solved from the context.

2 Representing Streams

In typed functional programming languages as ML, in�nite lists are represented using a possible

lazy evaluation of the arguments of the constructors. A value of type in�nite list will be a pair

with a value (the head of the list) as the �rst component and an arbitrary program of type

in�nite list (representing the tail of the list) as the second component. We can write a program

which evaluates the �rst n elements of an in�nite sequence. This program can possibly fail or

loop.

It may seem impossible to represent streams in a strongly typed programming language

where all programs are strongly terminating. However a possible concrete representation of

lists in a language like system F will be as a process generating in�nitely many objects.

We investigate possible representations of the type of streams in both system F and the

Calculus of Constructions. The type of streams is a particular case of a coinductive type,

namely a greatest �xpoint of a monotonic operator. We �rst recall the general scheme to

represent coinductive types in system F .

2.1 Coinductive types in System F

The representation of inductive data types like integers or lists in system F can be seen as an

encoding of smallest �xpoints of monotonic operators. A general presentation of this can be

found in [1] or [4]. The case of coinductive types is less known but was studied by G. Wraith [11].

232

The representation of �xpoints of monotonic operators can be seen as an application of

Tarski general �xpoint theorem. A coinductive type is the greatest �xpoint of a monotonic

operator A(X) which is computed as the least upper bound of the X such that X < A(X).

The order is just inclusion which is encoded via implication. The least upper bound is the

union which is encoded via an existential type. This existential type is not a primitive notion

in system F but can itself be encoded using a second-order quanti�cation over types.

2.1.1 Basic de�nitions

In system F , the types in which a variable X occurs positively are generated by the entry Pos

of the following syntax :

Pos ::= M j X j 8Y:Pos j Neg! Pos

Neg ::= M j 8Y:Neg j Pos! Neg

with the restriction that X does not occur in M .

Let A(X) be a correct type in which X occurs positively, let Y be a type variable and f a

variable of type X ! Y then it is possible to build a term A[f] of type A(Y) by induction over

A(X).

Let A(X) be a correct type of system F in which X occurs positively. We can de�ne both �

and � the smallest and the greatest �xpoint of this operator. We outline in the following table

the main constructions associated to both types.

Inductive types Coinductive types

� �

T

X

A(X) � X

� 8X:(A(X)! X)! X

� �

S

X

X � A(X)

� 9X:(X ! A(X)) ^X

� 8C:(8X:(X ! A(X))! X ! C)! C

iter : 8X:(A(X)! X)! �! X

� �X:�f:�m:(m X f)

in : A(�)! �

� �a:�X:�f:(f (A[iter X f] a))

build : 8X:(X ! A(X))! X ! �

� �X:�f:�x:�C:�H:(H X f x)

out : � ! A(�)

� �m:(m A(�) �X:�f:�x:(A[build X f] (f x)))

iter X F (in m)! F (A[iter X F] m) out (build X F x)! A[build X F] (F x)

2.1.2 Natural numbers and Streams

The typical example of an inductive de�nition is the type of natural numbers. It is the smallest

�xpoint of the operator 1 + X which can be encoded in system F as 8C:C ! (X ! C) ! C.

The typical example of a coinductive de�nition is the type of streams of elements of a type A. It

is the greatest �xpoint of the operator A �X which can be encoded as 8C:(A! X ! C)! C.

In both cases, we can �nd more direct encoding than the one presented above. We outline the

main constructions in the following table.

233

Natural numbers Streams

Nat $ 1 + Nat

� 8X:X ! (X ! X)! X

Str $A � Str

� 9X:(X ! A) ^ (X ! X) ^X

� 8C:(8X:(X ! A)! (X ! X)! X ! C)! C

iter : 8X:X ! (X ! X)! Nat! X

� �X:�x:�f:�n:(n X x f)

0 : Nat

� �X:�x:�f:x

S : Nat! Nat

� �n:�X:�x:�f:(f (n X x f))

build : 8X:(X ! A)! (X ! X)! X ! Str

� �X:�h:�t:�x:�C:�H:(H X h t x)

hd : Str! A

� �s:(s A �X:�h:�t:�x:(h x))

tl : Str! Str

� �s:(s Str �X:�h:�t:�x:(build X h t (t x)))

g : T h : T ! T g : T ! A h : T ! T

f : Nat! T � (iter T g h) f : T ! Str � (build T g h)

f 0 ' g

f (S n) ' (h (f n))

hd (f x) ' (g x)

tl (f x) ' f (h x)

2.1.3 Examples

The nth element of a stream. To compute the nth element of a stream is done by induction

on n. We de�ne a function nth which has type Nat ! Str ! A. We want it to satisfy the

following equations :

nth 0 s ' hd s nth (S n) s ' nth n (tl s)

This is achieved by the following de�nition :

nth � (iter Str! A hd �H : Str! A:�s : Str:(H (tl s)))

This is an example of an iterative de�nition over an higher-order type (Str! A).

Stream of natural numbers starting from n. We can represent the stream of natural

numbers (n n+ 1 n+ 2 : : :). We de�ne a function Enu which has type Nat ! Str. We want it

to satisfy the following equations :

hd (Enu n) ' n tl (Enu n) ' (Enu (S n))

This is achieved with the de�nition : Enu � (build Nat �x:x S).

Following the same pattern we can represent the constant stream which only contains the

value n as :

Con � (build One �x:n �x:x o)

with One a type (for instance 8X:X ! X) with at least one element o.

2.1.4 Properties of streams

A \canonical element" of type streams will be a quadruple (X;H; T; x) with X a type, H a

function of type X ! A, T a function of type X ! X and x a term of type X. Such a stream is

obtained by (build X H T x). Its head will be (H x) and its tail a quadruple (X;H; T; (T x)).

The nth element of this stream is (H (T

n

x)) where (T

0

x) = x and (T

n+1

x) = (T

n

(T x)).

234

The stream (X;H; T; x) can be seen as an abstract representation of a process build on a type

X, a current state x and functions H and T that computes the output of the stream and the

modi�cation of the state.

We can say that this representation is abstract because when we have an element of type

stream, we cannot access its particular implementation.

Of course an in�nite list can be implemented as many di�erent objects of type streams. For

instance, if s is a stream then (build Str hd tl s) and (build Nat �n : Nat:(nth n s) S) are also

streams which produce the same elements.

A natural question to ask is whether a close object of type Str is convertible to a term of

the form (build X H T x). This is not true because of the impredicative representation of the

existential type. For instance the constant stream can be represented as :

�C:�H : 8X:(X ! Nat)! (X ! X)! X ! C:

(H C ! C �x : C ! C:n �x : C ! C:x �x : C:x)

This sort of problem was also mentioned for inductive types in [10] although the representation

of inductive types is adequate for some \simple" types as natural numbers. This problem

will disappear in the system Coq if we use the general primitive notion of so-called inductive

de�nitions (but which can be used also for non-inductive concrete de�nitions as existential,

pairs or disjunctions). With this encoding of the existential type, a close normal term of type

9X:A(X) will be a pair (X;H) with a close type X and a close term H of type A(X).

Iterative versus primitive recursive de�nitions. The impredicative encoding of natu-

ral numbers gives naturally the de�nition of functions using an iterative scheme (f (S n)) =

(h (f n)). The more general scheme of primitive recursive de�nition (f (S n)) = (h n (f n))

is obtained using iteration and pairing. It is well known that this encoding is not satisfactory

because (f (S n)) reduces to (h n (f n)) only if n is a close natural numbers and also the

number of reduction steps will be proportional to n. There is of course an analogous problem

for streams. The basic iterative scheme of de�nition is (tl (f x)) = (f (h x)). With this only

scheme, it is not direct to program a function for the concatenation of an element a at the head

of a stream s. The equations for such a de�nition will be :

(hd (conc a s)) = a (tl (conc a s)) = s

More generally we would like to program a stream as some process (X;h; t; x) which at some

step becomes a new given stream. We write X + Str � 8C:(X ! C) ! (Str ! C) ! C the

type representing the disjunct union of X and Str. We call inl (resp. inr) the left (resp. right)

injection of type X ! X +Str (resp. Str! X + Str). The analogous of primitive recursion will

be an operation build pr of type :

8X:(X ! A)! (X ! (X + Str))! X ! Str:

We would like the following equalities to hold :

hd (build pr X h t x) = (h x)

tl (build pr X h t x) = build pr X h t y if (t x) = (inl y)

tl (build pr X h t x) = s if (t x) = (inr s)

235

If f is of type X ! Y and g of type Str! Y , we write [f; g] the function of type (X+Str)! Y

such that [f; g] (inl x) ' (f x) and [f; g] (inr y) ' (g y). We can mimic the behavior of build pr

by taking :

build pr � �X:�h : X ! A:�t : X ! (X + Str):�x : X:

(build X + Str [h; hd] [t; �s : Str:(inr (tl s))] (inl x))

The equalities hd (build pr X h t x) = (h x) and tl (build pr X h t x) = (build pr X h t y)

if (t x) = (inl y) will be satis�ed as convertibility rules. But if (t x) = (inr s), the streams

tl (build pr X h t x) and s will not be convertible but will only have the same behavior.

Using build pr, the stream (conc a s) can be de�ned as :

(build pr One �x:a �x:(inr s) o)

The de�nition of the analogous of primitive recursion for coinductive types in typed lambda-

calculus is presented in [8, 3]. We will not need it in our development of the sieve of Eratosthenes.

Termination properties. In system F , every program terminates. If s is a stream, it implies

that for each n, nth n s has a value. So an element of type Str de�ne a total function from Nat

to A.

2.2 Streams in the system Coq

The system Coq extends the Calculus of Constructions with a primitive mechanism for inductive

de�nitions. It contains system F and the above representation of Streams can consequently be

used. We do not use the extension with primitive inductive de�nitions for the encoding of

streams but we shall use it for the type of natural numbers in order to make available the

corresponding induction principle.

The Calculus of Constructions contains dependent types like equality or the existential type.

This allows to reason about these streams. For instance we may state and prove properties like :

8n:(nth n (Enu 0)) = n

this will be done by proving more generally by induction over n :

8n;m : Nat:(nth n (Enu m)) = n+m

But this is an external point of view where we �rst write a program (in that case a stream) and

then prove its properties. We are looking for a method where we build at the same time the

stream and its proof of correctness. One �rst possibility is to use for the type A of the elements

of the stream a type which contains some logical information. For instance the constant stream

with only n which was speci�ed as a stream with elements of type Nat can in the Calculus of

Constructions be speci�ed as a stream with elements in the type 9p : Nat:p = n of natural

numbers which are equal to n. But this is clear that this kind of constant speci�cation will not

be very useful and it seems necessary to be able to parameterize the speci�cation depending on

the position of the element in the stream. We shall investigate a new de�nition of the type of

streams with a type of output depending on the range of the element in the stream.

236

2.2.1 Indexed Streams

We can de�ne a type for streams using dependent types that will allow an internal parameteri-

zation of streams with the index. A stream in system F gives for each n an element in a type

A. Using dependent types, we can more generally in the Calculus of Constructions de�ne a new

type of streams that will give for each n a proof of a property (A n). The main constructions

related to such a stream are listed in the following table.

Str � �n : Nat:9P : Nat! Set:(8m:(P m)! (A m)) ^ (8m:(P m)! (P (S m))) ^ (P n)

: Nat! Set

� �n : Nat:8C : Set:

(8P : Nat! Set:(8m:(P m)! (A m))! (8m:(P m)! (P (S m)))! (P n)! C)

! C

build : 8n : Nat:8P : Nat! Set:

(8m:(P m)! (A m))! (8m:(P m)! (P (S m)))! (P n)! (Str n)

� �n:�P:�h:�t:�x:�C:�H:(H P h t x)

hd : 8m:(Str m)! (A m)

� �m:�s:(s (A m) �P:�h:�t:�x:(h m x))

tl : 8m:(Str m)! (Str (S m))

� �m:�s:(s (Str (S m)) �P:�h:�t:�x:(build (S m) P h t (t m x)))

The functions de�ned above satisfy the following convertibility rules with m; P; h; t and x of

the appropriate types :

hd m (build m P h t x) ' h m x

tl m (build m P h t x) ' build (S m) P h t (t m x)

We can now prove the following property by induction over n.

8n:8m : Nat:(Str m)! (A (n+m))

We call this proof nth. We can check that its computational behavior is similar to the one of

the nth function in system F .

2.2.2 Examples

The example of the stream which contains successive numbers can be seen as an indexed stream.

The speci�cation of the output will be that for each n it gives a number p equal to n. This is

represented in Coq as �n : Nat:9p : Nat:p = n. Let us call A this speci�cation. Because there

exists obvious proofs h of 8m:(A m)! (A m), t of 8m:(A m)! (A (S m)), and for each n an

object x of type 9p : Nat:p = n, we can de�ne a stream on the speci�cation A indexed by n as :

(build n A h t x)

2.2.3 Computational interpretation

There exists a computational interpretation of the proofs of the Calculus of Constructions as

programs of F

!

which is described in [9, 10]. If we perform this interpretation on indexed

237

streams, we do not endup with the system F representation of streams but with a slightly

heaviest representation :

9X:(Nat! X ! A) ^ (Nat! X ! X) ^X

More or less this representation of streams contains an extra state of type Nat with the index

stored in it.

We may avoid this problem if we introduce an extra notation for variables that will not be

used for computations. These notations are ��x:t and 88x:P . The precise rules and interpretation

for this extension are in the spirit of what Hayashi did in the system ATT [5]. They have still

to be written and are not the purpose of this paper but intuitively the ideas are the following :

The extraction of ��x:t is just the extraction of t, if t is of type 88x:P then the extraction of

(t u) is the extraction of t. A program p will be correct with respect to the speci�cation 88x:P if

for all x, the program p is correct for P (usually we say that p is correct with respect to 8x:P if

for all x, the result of the program p applied to x is correct for P .) We can statically check that

a variable x is not used in a computational part which makes sure that the extraction process

is correct.

With the following de�nitions for the type of indexed streams, we shall have as extracted

terms exactly the system F analogous constructions.

Str � �n : Nat:9P : Nat! Set:(88m:(P m)! (A m)) ^ (88m:(P m)! (P (S m))) ^ (P n)

: Nat! Set

� �n : Nat:8C : Set:

(8P : Nat! Set:(88m:(P m)! (A m))! (88m:(P m)! (P (S m)))! (P n)! C)

! C

build : 88n : Nat:8P : Nat! Set:

(88m:(P m)! (A m))! (88m:(P m)! (P (S m)))! (P n)! (Str n)

� ��n:�P:�h:�t:�x:�C:�H:(H P h t x)

hd : 88m:(Str m)! (A m)

� ��m:�s:(s (A m) �P:�h:�t:�x:(h m x))

tl : 88m:(Str m)! (Str (S m))

� ��m:�s:(s (Str (S m)) �P:�h:�t:�x:(build (S m) P h t (t m x)))

2.3 General parameterized Streams

In general the stream can be parameterized by an arbitrary sequence of objects in a given type

U . The speci�cation of the output will be a relation on U namely A of type U ! U ! Set.

A stream parameterized by p of type U will give as an output a new parameter q, a proof of

(A p q) and its tail part will be a stream parameterized with q.

We do not give all the precise de�nitions for such a type of streams. It will be done in a

particular case for the development of the partial version of the sieve of Eratosthenes.

3 The sieve of Eratosthenes in system F

We are now interested in the development of the sieve of Eratosthenes in system F .

238

3.1 Description of the algorithm

The algorithm is simple, we describe it equationally.

An auxiliary operation is the sieve function itself which takes a number p and a stream s

and gives back the stream of the elements of s which cannot be divided by p. The operation

sieve has type Nat! Str! Str. It can be described by the following equation :

(sieve p s) = if div p (hd s) then sieve p (tl s)

else conc (hd s) (sieve p (tl s))

The sieve is used in an operation of type Str! Str that we call primes. This operation takes a

stream s, keep its head p and applies to the tail of this stream the sieve operation using p. The

primes function is characterized by the following equations.

hd (primes s) = (hd s) tl (primes s) = primes (sieve (hd s) (tl s)))

The primes numbers are obtained by applying the primes operation to the stream (Enu 2).

If the scheme for the de�nition of the stream of prime numbers follows the general pattern

of an iterative de�nition, it is not the case for the sieve function. The head of the stream

(sieve s) will be the �rst element of s which can be divided by p. Nothing in the algorithm

makes sure that this search terminates. Starting from a di�erent stream than (Enu 2) we could

loop forever. To say that the result of the sieve has type Str implies in particular that there are

in�nitely many primes numbers. It is not surprising that we cannot just translate this algorithm

in system F .

3.2 A total version of the sieve

There are two solutions to avoid this problem. The �rst one is to introduce an explicit bound

(from mathematical results we know how to compute one) for the search of the next number

which cannot be divided by p. The second one is not to manipulate streams of natural numbers

but streams of a type Nat+ which contains an extra dummy element dum. The output will be

a stream with primes numbers separated by the dummy element. Nothing in the type of the

output avoids that, from one point, every output will be dummy.

We call this last algorithm, the total version of the sieve of Eratosthenes. We can program in

system F a function div+ of type Nat+! Nat+! bool, such that (div+ p q) = true when p or

q is the dummy element or when p divides q (division on natural numbers is primitive recursive

and can be programmed in system F). The operation sieve has type Nat+ ! (Str Nat+) !

(Str Nat+). It can be described by the following equations :

hd (sieve p S) = if (div+ p (hd S)) then dum else (hd S)

tl (sieve p S) = sieve p (tl S)

This follows an iterative scheme. It is actually just the operation of applying a function f (in

that case �q:if (div+ p q) then dum else q) to each element of a stream. It can easily be

translated into exact code in system F .

map Str : (A! B)! (Str A)! (Str B)

� �f : A! B:(build (Str A) �s : (Str A):(f (hd s)) tl)

The primes operation has type (Str Nat+)! (Str Nat+). The equations are not changed :

hd (primes s) = (hd s) tl (primes s) = primes (sieve (hd s) (tl s)))

239

The primes numbers are obtained by applying the primes operation to the stream of successive

elements in Nat+ starting from 2 namely with inj the injection function from Nat to Nat+.

Si � (build Nat inj S 2)

We may remark that we will also get the stream of primes numbers starting from three by

applying the primes operation to the stream of odd numbers starting from three. This stream

can be constructed as :

(build Nat inj �n : Nat:(S (S n)) 3)

4 The sieve of Eratosthenes in Coq

We now want to have a proved version of the sieve of Eratosthenes, namely that it gives us all

prime numbers.

Instead to do a proof of the previous program we shall build a new one that will give us as

an output a natural number and a proof of its primality. Of course the problem will also be to

specify that it gives us also all prime numbers.

We �rst study the proof counterpart of the total sieve which answers for each number if it

is prime or not. We shall also gives the constructions corresponding to a stream which only

contains the prime numbers.

4.1 Speci�cation

If we analyze the algorithm, we can see that its speci�cation does not concern really primality

but can be parameterized by the initial stream the primes operation is applied to.

Let this stream be called Si. We shall denote Si (n) the n-th element of this stream. The

output of the sieve program will be the elements of Si which cannot be divided by any of the

previous elements in the stream. Of course if Si is the stream of natural numbers starting from

two or the stream of odd numbers starting from three, the fact that they cannot be divided by

a previous element is equivalent to the fact that they are prime.

This analysis led us to the de�nition of the relation divinf on natural numbers with the

following meaning :

divinf k n � 9p:(p < k ^ div Si (p) n)

A few logical lemmas about divinf will be used.

4.2 A total sieve development

We �rst develop a proved version of the sieve of Eratosthenes which corresponds from the

computational viewpoint to the total sieve we studied in system F .

We introduce the predicate divspec of type Nat! Nat! Set. The de�nition of the speci�-

cation (divspec k n) is (9p : Nat:p = Si (n)^:(divinf k p)) + (divinf k Si (n)). The computational

contents of this speci�cation corresponds to the type Nat+.

The output of the �nal sieve program will be an indexed stream based on the predicate

�n : Nat:(divspec n n). It will indicate for the nth element of the stream whether there exists

k < n such that Si (k) divides Si (n).

240

The function sieve. The sieve transformation itself corresponds to a proof of :

8p : Nat:88k : Nat:(p = Si (k))! 88n:(Str (divspec k) n)! (Str (divspec (S k)) n)

Let assume that we have p, k and a proof of p = Si (k). To prove 88n:(Str (divspec k) n) !

(Str (divspec (S k)) n) we use build with the predicate (Str (divspec k)) we have to prove the

two following lemmas :

88n:(Str (divspec k) n)! (divspec (S k) n)

and

88n:(Str (divspec k) n)! (Str (divspec k) (S n))

This last lemma is just proved by the tl term. For the �rst one, assuming we have n and

an element s in (Str (divspec k) n) we look at the head of the stream. It gives us a proof of

(divspec k n) � (9q : Nat:q = Si (n)^:(divinf k q)) + (divinf k Si (n)). We do a case analysis. If

there is a proof of (divinf k Si (n)) then there exists a l < k such that Si (l) divides Si (n) so a

fortiori (divinf (S k) Si (n)) is satis�ed and then there is a proof (divspec (S k) n). In the other

case, let q be such that q = Si (n) ^ :(divinf k q), we test whether q can be divided by p. If p

divides q then because p = Si (k) and q = Si (n) we conclude that (divinf (S k) Si (n)) is satis�ed

and then (divspec (S k) n). In the other case from :(divinf k q) and :(div Si (k) q) we conclude

:(divinf (S k) q) and �nally (divspec (S k) n). This ends the proof of the sieve.

The function primes. The primes function corresponds to a proof of :

88k : Nat:(Str (divspec k) k)! (Str �n : Nat:(divspec n n) k)

It means that starting from a stream indexed by k and which gives for each n if Si (n) can be

divided by Si (m) for m < k we can build a \diagonal" stream also indexed by k which gives

for each n whether Si (n) can be divided by Si (m) for m < n.

In order to prove this we apply build to the predicate �n : Nat:(Str (divspec n) n). We have

to prove the two lemmas :

88n : Nat:(Str (divspec n) n)! (divspec n n)

which is just proved by the hd function. We also have to prove :

88k : Nat:(Str (divspec k) k)! (Str (divspec (S k)) (S k))

Let s be a term of type (Str (divspec k) k) we take the head of this stream. It gives a proof

of (divspec k k) � (9p : Nat:p = Si (k)^:(divinf k p)) + (divinf k Si (k)). We do a case analysis.

Let p be such that p = Si (k) we apply the sieve program to p, k, (S k) and the tail of s which

has type (Str (divspec k) (Sk)). We get the expected proof of (Str (divspec (S k)) (Sk)). If

(divinf k Si (k)) we use the only non trivial lemma about divinf which says that if n cannot be

divided by any Si (m) with m < k then because Si (k) can be divided by Si (l) with l < k we

have that n cannot be divided by Si (k). So (divinf k Si (k))! :(divinf k n)! :(divinf (S k) n).

So from 9q : Nat:q = Si (n) ^ :(divinf k q) we deduce 9q : Nat:q = Si (n) ^ :(divinf (S k) q).

And because we always have (divinf k n) ! (divinf (S k) n) we deduce (divspec k n) !

(divspec (S k) n). We �nally can map this proof on the tail of s to get a proof of

241

(Str (divspec (S k)) (S k)). We may check that this proof which looks a bit complicated acts

like identity on streams.

Because we have trivially a proof of :(divinf 0 n) we may build the initial stream as a proof

of (Str (divspec 0) 0):

This is done using build with the predicate �n : Nat:9s : Str:s = (tl

n

Si). We have to prove :

88n:(9s : Str:s = (tl

n

Si))! (divspec 0 n)

and

88n:(9s : Str:s = (tl

n

Si))! 9s : Str:s = (tl

(S n)

Si)

Let s be such that s = (tl

n

Si). For the �rst lemma, we take its head which is equal to Si (n).

It gives us a proof of 9q : Nat:q = Si (n) ^ :(divinf 0 q) and then a proof of (divspec 0 n). For

the second lemma we take the tail of s and check that (tl

(S n)

Si) = (tl (tl

n

Si)).

Final program. Applying the primes operation to this initial stream gives us a proof of :

(Str �n : Nat:(divspec n n) 0):

Using the nth function we have a proof of 88n:(divspec n n).

One step that remains to be done is to prove arithmetical lemmas like :

(8p:Si (p) = p+ 2)! 8n:(divspec n n)! ((is prime n+ 2) + :(is prime n+ 2))

or

(8p:Si (p) = 2p+ 3)! 8n:(divspec n n)! ((is prime 2n+ 3) + :(is prime 2n+ 3))

4.3 A partial �lter development

We are now interested in a program that will only gives as output the numbers that cannot be

divided by previous elements.

4.3.1 Speci�cation

It is not easy to specify this problem using the index of this number in the actual stream. A

more natural speci�cation will be to relate the output to its index in the initial stream Si and

also to the index of the previous element.

For this we use a general parameterized type of streams which is de�ned as follow. Let A

be a speci�cation of type Nat! Nat! Set. We give the type of the build and the out function.

In that case the out function gives for a stream parameterized by p, a new parameter q, its head

which is a proof of (A p q) and its tail which is a stream parameterized by (S q)

1

.

Str � �p : Nat:9P : Nat! Set:(88p:(P p)! 99q : Nat:(A p q) ^ (P (S q))) ^ (P p)

: Nat! Set

build : 88p : Nat:8P : Nat! Set:

(88p:(P p)! 99q : Nat:(A p q) ^ (P (S q)))! (P p)! (Str p)

out : 88p:(Str p)! 99q : Nat:(A p q) ^ (Str (S q))

1

The general case would have been to give the tail as a stream parameterized by q, but in our case q will

alway be equal to (S q

0

) and the speci�cation can more naturally be written as a relation between p and q

0

than

as a relation between p and q

242

We introduce the notation :

between � �n;m : Nat:�P : Nat! Prop:(n �m) ^ 8x:(n � x < m)! (P x)

(between n m P) means that n � m and P holds for all x such that n � x < m The speci�cation

we shall use is :

ASieve � �k; p; q : Nat:(9n : Nat:n = Si (q) ^ :(divinf k n)) ^ (between p q �x:(divinf k Si (x)))

(ASieve k p q) means that we have a number equal to Si (q) which is the �rst element in Si from

Si (p) that cannot be divided by a Si (l) for l < k.

4.3.2 Bounded search

We have to search for an element in the stream which satis�es some property. We know the

existence of a bound N for the number of step in the search.

To program this, we use that some order is well-founded. The order depends on the bound

N , it is de�ned as :

n �

N

m � m < n ^m < N

It is clear that there cannot be any in�nite decreasing chain for �

N

because if : : : n

k

�

N

: : : �

N

n

1

�

N

n

0

we have :

n

0

< n

1

< : : : < n

k

< : : : < N

We shall use a principle of well-founded induction namely the property WF�

N

:

8P : Nat! Set:(8n:(8m:(m �

N

n)! (P m))! (P n))! 8n:(P n)

This property can be proved directly by induction over the bound N . We shall use the fact that

8n;m : Nat::(m �

0

n) and 8N;n;m : Nat:((S m) �

(S N)

(S n))! m �

N

n.

For the case N = 0, we assume we have F of type 8n:(8m:(m �

0

n) ! (P m)) ! (P n))

and n of type Nat. We apply F to n, we have to prove 8m:(m �

0

n) ! (P m) which is done

by absurdity of m �

0

n.

For the induction step we have a proof HypN of

8P : Nat! Set:(8n:(8m:(m �

N

n)! (P m))! (P n))! 8n:(P n);

a predicate P of type Nat! Set, a proof F of 8n:(8m:(m �

(S N)

n)! (P m))! (P n) and n

of type Nat. We apply F to n, we have to prove 8m:(m �

(S n)

n)! (P m). Let m be such that

m �

(S N)

n, we know that m = (S m

0

). We get the proof of (P (S m

0

)) using the hypothesis

HypN on the predicate �q:(P (S q)) and on m

0

. We have to prove :

8n:(8m:(m �

N

n)! (P (S m)))! (P (S n))

let p be of type Nat and Hp be a proof of 8m:(m �

N

p) ! (P (S m)). We build a proof of

(P (S p)) with F applied to (S p). We then have to prove 8m:(m �

(S N)

(S p))! (P m). But

m �

(S N)

(S p) implies m = (S q) and q �

N

p. We apply Hp to q and get a proof of (P (S q))

which is (P m). This ends up the proof.

The computational content of this proof can be written as a program in a ML like language :

243

let rec Wfind = function

0 -> fun F n -> (F n (fun m -> error))

| S N -> fun F n ->

(F n (fun m -> Wfind N

(fun p Hp -> F (S p) (fun m -> Hp (m-1)))

(m-1)))

This primitive recursive functional looks slightly more complicated than the general recursive

program which do the same task :

let rec Wfrec F n = F n (Wfrec F)

This second program does not make use of the bound N for the search. In Coq, we can choose

to use the direct proof of the induction principle �

N

and we will get a strongly normalizable

program. We can also just prove that the order we use is well-founded and then use the

principle :

8R:(well founded R)! 8P : U ! Set:(8n:(8m:(R m n)! (P m))! (P n))! 8n:(P n)

This axiom is interpreted via a realisability interpretation as the program WFrec. It does not

make use of the proof of the well-foundness of the relation.

4.3.3 The sieve program

To be able to write the sieve program we need more information on the stream Si, namely that

for each k it contains in�nitely many element that cannot be divided by Si (l) for l < k.

We add such an hypothesis : 8k; n : Nat:9N : Nat:9p : Nat:((n � p < N)^:(divinf k Si (p))).

If we want a program written in a total language we need to explicitly give the bound N , if we

only want to develop the program using general �xpoint this property can be non informative

and will only be used for proving the well-foundness of the order.

The sieve program will be a proof of :

8n : Nat:88p; q : Nat: (between p q �x:(divinf p Si (x)))! n = Si (q)

! 88r : Nat:(Str (ASieve p) r)! (Str (ASieve (S q)) r)

In order to do that, we assume we have n; p and q natural numbers, and proofs of n = Si (q)

and (betweeen p q �x:(divinf p Si (x))). We apply build with the predicate (Str (ASieve p). We

have to prove :

88r:(Str (ASieve p) r)! 99t : Nat:(ASieve (S q) r t) ^ (Str (ASieve p) (S t))

For this, we use the fact that there exists N such that 9x : Nat:r � x < N ^:(divinf (S q) Si (x))

and prove

8r: (9x : Nat:r � x < N ^ :(divinf (S q) Si (x)))

! (Str (ASieve p) r)! 99t : Nat:(ASieve (S q) r t) ^ (Str (ASieve p) (S t))

using the well-founded induction over the order �

N

. Our induction hypothesis will be :

8u : Nat: (u �

N

r)! (9x : Nat:u � x < N ^ :(divinf (S q) Si (x)))

! (Str (ASieve p) u)! 99t : Nat:(ASieve (S q) u t) ^ (Str (ASieve p) (S t))

244

Now we assume 9x : Nat:r � x < N^:(divinf (S q) Si (x)). Let s be of type (Str (ASieve p) r).

We apply it an out step. It gives us a parameter t, proof of (ASieve p r t) and a stream stl of

type (Str (ASieve p) (S t)). We do an elimination on the proof of (ASieve p r t). It gives us a

natural number m and proofs of m = Si (t), :(divinf p m) and (between r t �x:(divinf p Si (x))).

Now we look whether n divides m or not.

Case n divides m. If n divides m then we apply the induction hypothesis to (S t). It is easy

to check from the hypotheses that :

8x:r � x < (S t)! (divinf (S q) Si (x))

Consequently from 9x : Nat:r � x < N ^ :(divinf (S q) Si (x)), we get

9x : Nat:((S t) � x < N) ^ :(divinf (S q) Si (x)):

We have to show that (S t) �

N

r. >From (between r t �x:(divinf p Si (x))), we get r � t and

then r < (S t). Also it implies that (S t) < N because otherwise there will be no x between r

and N such that :(divinf (S q) Si (x)).

The proof of (Str (ASieve p) (S t)) will be just the stream stl (the tail of s). We got

a new parameter u and proofs of (ASieve (S q) (S t) u) and (Str (ASieve p) (S u)). It

is enough to show from this that the property (ASieve (S q) r u) holds. The only prob-

lem is to show (between r u �x:(divinf (S q) Si (x))) but this is a simple consequence of

(between r (S t) �x:(divinf (S q) Si (x))), and (between (S t) u �x:(divinf (S q) Si (x))) which

comes from (ASieve (S q) (S t) u).

Case n does not divide m. If n does not divide m then the proof of :

99t : Nat:(ASieve (S q) r t) ^ (Str (ASieve p) (S t))

is done by checking that indeed t satis�es the expected properties.

The proof of (Str (ASieve p) (S t)) is the tail stream stl. To prove (ASieve (S q) r t) we

�rst remark that the property (between r t �x:(divinf (S q) Si (x)) is an easy consequence of

(between r t �x:(divinf p Si (x)) and the fact that p � (S q). Because m = Si (t), it is enough

to prove :(divinf (S q) m). We have a proof of :(divinf p m). Let us assume that there exists

a < (S q) such that Si (a) divides m and show that it leads to a contradiction. We cannot have

a < p because :(divinf p m), a = q is not possible because Si (q) = n does not divide m, we

cannot have p � a < q because 8x:p � x < q ! (divinf p Si (x)) so we shall have b < p such

that Si (b) divides Si (a) and consequently m. This ends the proof of this case and of the sieve

program.

4.3.4 The primes function

The primes function is now not really di�cult to prove. Its speci�cation is :

88k : Nat:(Str (ASieve k) k)! (Str �n;m : Nat:(ASieve n n m) k)

The proof is done by applying build with the predicate �k : Nat:(Str (ASieve k) k). We have to

show that :

88p : Nat:(Str (ASieve p) p)! 99q : Nat:(ASieve p p q) ^ (Str (ASieve (S q)) (S q))

245

So let s be of type (Str (ASieve p) p) We apply an out step. It gives us q, a proof of (ASieve p p q)

and the tail stream stl of type (Str (ASieve p) (S q)). >From this we need to get a proof of

(Str (ASieve (S q)) (S q)). >From the proof of (ASieve p p q) we get n such that n = Si (q) and

(between p q �x:(divinf p Si (x))). So we can apply the sieve lemma to n, p and q also to (S q)

and stl. We get the expected proof of (Str (ASieve (S q)) (S q)).

4.3.5 The �nal step

As previously it is easy to build from Si a proof of (Str (ASieve 0) 0) to which we apply the

primes operation. Now if we have a proof of (ASieve p p q), it implies that Si (q) cannot be

divided by Si (k) with k < p and 8x:p � x < q ! (divinf p Si (x)) this implies that Si (q) cannot

be divided by Si (k) with k < q which is the expected result for testing primality.

5 Conclusion

In this paper we investigated the programmation with in�nite lists in strongly typed lambda-

calculus by developing the example of the sieve of Eratosthenes. The complete proofs were

developed in the system Coq.

It appears when we want to develop programs concerning streams that the methods to

indicate in a speci�cation which part will be used for computation is too weak in Coq. If we

want to control exactly the computational aspect of the streams which are used, we shall need

a method to indicate that a parameter of the problem should not appear as an input of the

extracted program.

When trying to develop basic programs (for instance sorting algorithms) in the pure Cal-

culus of Constructions axioms like induction over natural numbers were always needed. In

the development of this algorithm on streams we did not need to add any axiom concerning

coinductive types to the theory. The only axiom we used is the one concerning well-founded

induction for the development of the partial recursive sieve. But it is not surprising because we

know it is not possible to write in the Calculus of Constructions a proof of a search which does

not make a computational use of a bound for this search.

The main di�culty to carry out this development was �rst to get the idea of using a param-

eterized type for streams, second to �nd the correct predicate to use when we apply the build

operation. In general we know from the expected program what is the computational part of

this predicate. For the logical part, it corresponds to �nd a correct invariant for the problem.

This is a mathematical di�culty which often appears in the domain of proofs of programs. As

soon as we get the right speci�cations and invariants, the system Coq is of a great help to carry

out the whole formal development of the proof.

References

[1] C. B�ohm and A. Berarducci. Automatic synthesis of typed �-programs on term algebras.

Theoretical Computer Science, 39, 1985.

[2] G. Dowek et al. The Coq Proof Assistant User's Guide Version 5.6. Rapport Technique

134, INRIA, December 1991.

[3] H. Geuvers. Inductive and coinductive types with iteration and recursion. Faculty of

Mathematics and Informatics, Catholic University Nijmegen, 1990.

246

[4] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical

Computer Science 7. Cambridge University Press, 1989.

[5] S. Hayashi. Singleton, union, intersection types for program extraction. In Proceedings of

TACS'91, 1991.

[6] G. Kahn. The semantics of a simple language for parallel programming. In Information

Processing 74. North-Holland, 1974.

[7] G. Kahn and D. MacQueen. Coroutines and networks of parallel processes. In B. Gilchrist,

editor, Information Processing 77. North-Holland, 1977.

[8] N. Mendler. Predicative types universes and primitive recursion. In Sixth Annual IEEE

Symposium on Logic in Computer Science, pages 173{184, Amsterdam, The Netherlands,

1991. IEEE Computer Society Press.

[9] C. Paulin-Mohring. Extracting F

!

's programs from proofs in the Calculus of Constructions.

In Association for Computing Machinery, editor, Sixteenth Annual ACM Symposium on

Principles of Programming Languages, Austin, January 1989.

[10] C. Paulin-Mohring. Extraction de programmes dans< le Calcul des Constructions. PhD

thesis, Universit�e Paris 7, January 1989.

[11] G. C. Wraith. A note on categorical data types. In D.H. Pitt, D.E. Rydeheard, P. Dybjer,

A.M. Pitts, and A. Poign�e, editors, Category Theory and Computer Science. Springer-

Verlag, 1989. LNCS 389.

247

Compositional understanding of type theory

Zhaohui Luo, Edinburgh

Abstract

We present a theory of dependent types and discuss several issues concerning its concep-

tual universe of types, which include the relationship between data types and propositions,

intensionality, and compositional understanding.

248

The new Implementation of ALF

Lena Magnusson

�

Department of Computer Science,

University of G�oteborg/Chalmers

Preliminary version, August 1992

1 Introduction

This paper describes the (completely) new implementation of ALF, which is an interactive proof

editing system, still on the experimental stage. The aims are to have a general mechanism for

adding and treating de�nitions in a uniform and powerful way, and to do proof editing as with

\scratch paper and pencil". Theories are represented in the framework as collection of constant

declarations, place holders are represented as yet unknown constant de�nitions and computation

rules are de�ned by pattern matching. The
exibility in proof editing comes from the possibility

to have several goals simultaneously, to combine top-down and bottom-up derivation, and to be

able to backtrack in a structured way. Many of these features originate in the �rst ALF-system

[ACN90] and an earlier implementation of Martin-L�of's logical framework [Mag91].

2 System Overview

The proof editing system is based on Martin-L�of's logical framework [NPS90], with the extension

of judgements for contexts and substitutions (local environments) and the notion of explicit

substitution applied to terms. The framework provides a general machinery for the theory

independent part of the proof derivation system and the possibility of representing theories in

the framework. Theories, de�nitions, proofs and incomplete derivations are all represented as

(collections of) constants declared in an environment. Proof editing consists of manipulating

the scratch area part of the environment, by adding de�nitions (new goals and lemmas), re�ning

goals by combining rules from the theory, primitives and lemmas (proved or not), extending the

theory with a completed proof, or deleting parts of a proof.

The system consists of three main parts, the environment with theory de�nitions and scratch

area, the checker and the command interpreter. The latter will not be a subject of this paper,

and we will refer instead to the system manual, which is under development. The di�erent

checking algorithms are all based on rules of the framework, and are parameterized over the

environment de�nitions.

�

lena@cs.chalmers.se

249

-

�

-

�

-

�

?

-

-

�

Z

Z

Z

Z

Z

Z

Q

Q

Q

Q

Q

Q

Window system

Administration Checker Environment

add

re�ne

delete

Scratch area

theory

de�nitions

User

Commands to

manipulate the

environment

Checking judgements,

de�nitions and

re�nements

Figure 4: System overview

The framework provides general rules for application, abstraction, substitution and reduction

(mainly beta and eta). A theory is represented by a collection of typed constants, where every

\constant - type" pair corresponds to giving an axiom (state the proposition without proof).

Rules, in a natural deduction style formulation of the theory, are represented as functions from

premises to conclusions. De�nitions of functions are given with pattern matching in a functional

language style.

The environment consists of three parts, the theory, the dictionary and the scratch area. Prim-

itive constants (given without justi�cation) belong to the theory and abbreviations (which can

be justi�ed by type checking) are kept in the dictionary. All constants can be declared in a local

context, which allows for de�ning theories and proofs parameterized over the context variables.

These generalized (open) theories and proofs can be instantiated to particular (closed) theories

and proofs by specializing the free variables of the constants with explicit substitutions.

The idea of the scratch area is that \unsure" parts of proofs can be manipulated in a similar

way as on a \scratch paper". Once completed in a satisfactory way, the proof can be moved

to the dictionary part of the environment. To manage backtracking and gluing parts together

in a correct way, some book keeping is required. For instance a full dependency graph is kept

and updated continuously, to prevent circular de�nitions. Moreover, a set of constraints are

kept, which are requirements concerning unknown notions needed to be satis�ed in the future

re�nements. All this book keeping is the reason for not allowing backtracking in the entire

environment.

3 The framework

3.1 Terms and types

Terms in ALF are lambda terms, extended with a notation for explicit substitution and with

constants declared in the environment. The syntax of terms is the following

e ::= x j c j [x

1

; : : : ; x

n

]e j e(e

1

; : : : ; e

n

) j cfx

1

:= e; : : : ;x

n

:= eg for n > 0,

250

where x denotes variables and c constants.

Additional restrictions are that 1) in an abstraction [x

1

; : : : ; x

n

]e, e is not itself an abstraction,

2) the head e in an application e(e

1

; : : : ; e

n

) is not an application and 3) the variables x

1

; : : : ; x

n

in an explicit substitution fx

1

:= e; : : : ;x

n

:= egc must all be declared in the local context of

the constant c.

Open terms contain free variables. These terms must be validated in a context, which is a

sequence of typings of free variables

[x

1

: �

1

; x

2

: �

2

; : : : ; x

n

: �

n

] (n � 0)

where x

i

, i = 1; : : : ; n are distinct variables, and the free variables occurring in �

i

must have

been declared earlier in the context. A substitution is a sequence of assignments of terms to

variables

fx

1

:= a

1

; x

2

:= a

2

; : : : ; x

n

:= a

n

g

The substitutions are performed simultaneously, instantiating (some of) the free variables of the

term. Only open terms (or constants denoting open terms) can be a�ected by a substitution.

The extension of syntax for explicit substitution is especially useful for instantiating variables

of yet unknown constants, or for constructing generalized proofs (proofs in a context) which

can later be specialized to particular (closed) proofs.

Types are generated from a set of ground types and a dependent function type constructor. A

ground type is either the prede�ned type Set or a term of type Set. The syntax of ground types

are

�

ground

::= Set j e (provided e : Set)

and for types

� ::= �

ground

j (�

1

; : : : ; �

n

)�

ground

for n > 0,

where

� ::= x : � j x

1

; : : : ; x

k

: � j � for n > 0.

We will denote terms by a; b; e or A;B, types by �; �, contexts by �;� and substitutions by
.

An extension of a context � (or substitution
) is denoted by �:[x : �] (or by
:fx := ag).

3.2 The framework rules

The extensions compared to the original formulation of Martin-L�of's logical framework are the

two judgements concerning contexts and substitutions and that judgements are given relative

to contexts.

The basic assertions in the framework logic are the following judgement forms

� : Context

� is a context

 : � �

 is a substitution which �ts context � in the context �

� : Type �
� is a type in the context �

� = � : Type � � and � are equal types in the context �

a : � �

a is an object of type � in the context �

a = b : � �

a and b are equal objects of type � in the context �

251

3.2.1 Context rules

A context is either empty or an extension of a proper context:

[] : Context

� : Context

� : Type �

x 62 �

�:[x : �] : Context

A substitution
 �ts a context � if for every x

i

:= a

i

in
, x

i

is in the context � and a

i

has

the type of x

i

. Also this relation is relative to a context (which will contain the free variables

of the a

i

's). This is also referred to as a contextual mapping, with the notation
 : �! �.

f g : [] �

 : � �

� : Type �

a : �
 �

:fx := ag : �:[x : �] �

3.2.2 Term and Type rules

The new formation rules, concerning contexts are the following

 : � �

� : Type �

�
 : Type �

 : � �

a : � �

a
 : �
 �

For the other rules, we will have to refer to [NPS90].

3.3 Representing a theory

There are mainly two di�erent kinds of de�nitions, primitive and de�ned notions. As mentioned,

primitive notions can not be justi�ed inside the system, whereas de�ned notions can be justi�ed

by type checking.

3.4 Primitive notions

The primitive notions are divided into two groups, constructors, which could be either set

constructors or element constructors, and implicitly de�ned constants. Implicit de�nitions are

used for representing rules of theories such as structural induction, or for de�ning primitive

functions on datatypes. These are called implicit since their meaning is given by (usually

recursive) equations, which show their computational behavior.

Primitive constant de�nitions have the following form

name : � � where name is a unique identi�er

such as N : Set; 0 : N and succ : (N)N . Implicit de�nitions consist of an additional list of

pattern equations, describing the computational behavior of the rule (function). Examples of

implicitly de�ned constants are

252

add : (N ;N)N

add(x; 0) = x

add(x; succ(y)) = succ(add(x; y))

natrec : (P : (N)Set;P (0); (x : N ;P (x))P (succ(x));n : N)P (n)

natrec(P; d; e; 0) = d

natrec(P; d; e; succ(x)) = e(x; natrec(P; d; e; x))

where patterns are either variables or element constructors (possibly applied to a substitution).

The constructors must be applied to the proper number of arguments which are again pat-

terns. A pattern can also be redundant (denoted) which means that the argument is uniquely

determined by type checking, and can therefore be safely omitted. These generalized patterns

(compared to functional languages) come from the dependent types. Nonlinear patterns are one

example of redundancy, but there are other cases as well. As a simple example, consider the

�rst projection fst : (A;B : Set; p : Prod(A;B))A where pair is the constructor of the product

type Prod. The pattern equation should be

fst(; ; pair(A;B; a; b)) = a

or equally

fst(A;B; pair(; ; a; b)) = a

We require the pattern equations to be non overlapping (or mutually disjoint), which means that

at most one pattern can match any term, and there is a way to ensure the pattern equations

to be exhaustive, by using a built in feature for generating pattern equations. The pattern

matching is described in detail in [Coqb].

3.5 De�ned notions

De�ned notions are either named terms together with their types and local contexts, or yet

unknown notions. There is also a possibility of giving a name to a context or a substitution,

and use the name as an abbreviation of the context or substitution, respectively. A yet unknown

notion is simply a de�ned notion where the term is not yet known, but which is intended to

be instantiated at a later point. Yet unknown notions are used for place holders. A constant

de�nition is of the following form

c = a : � �

where a is a term which may contain free occurrences of the variables in context �, or

c =? : � �

which denotes that c is yet unknown. The name c must be unique. Contexts can be concatenated

(extended), denoted by �

1

+ �

2

. Context abbreviations are written as follows

name = �

1

+ � � �+ �

n

n > 0

where �

i

can be either a context or a de�ned name. Substitution abbreviations are written

name =
 : � �

Substitutions can also be composed, with

1

�

2

: �

1

�

2

if

1

: �

1

� and

2

: � �

2

. The

abbreviations of contexts and substitutions are simply short hand notations, since whenever

needed, the abbreviations are expanded to their de�nitions.

253

4 Judgement checking

Judgements usually depend on constants from the current theory and dictionary, which are

declared in the environment (denoted �), and therefore the checking algorithm is parameterized

over �. We are not explicitly stating the validity of the environment in the rules below, but it

is assumed. the notion of valid environment is described in section 5.

The judgement checking algorithm will proceed in three steps, by checking 1) wellformedness,

2) validity and �nally 3) truth of the judgement. The judgement forms presented above, are all

decidable (with some minor restrictions), provided that the pattern equations given in the theory

will give rise to a con
uent rewriting system. This prerequisite is needed since each pattern

equation will correspond to a reduction rule (from left to right), and the equality of terms is

modulo all reduction equalities. Abbreviations are \reduced" by expansion of their de�nition,

but these are harmless rules, concerning con
uence. On the other hand, the incorporation

of place holders as yet unknown constant de�nitions, have the e�ect that the equality of two

terms can be not yet decidable, if the terms contain constants which have no de�nitions as

yet. Therefore, the judgement checking algorithm will not always answer either yes or no, it

will sometimes answer \maybe", meaning that the judgement might become true if the yet

unknown constants are instantiated properly (ful�ll the constraints). The second step in the

algorithm concerns validity of a judgement, which is weaker than a true judgement since it

means that the judgement will become true if the additional requirements of the constraints are

satis�ed. A judgement can be decided to be true or false as soon as there are no yet unknown

constants involved (and sometimes refuted before that).

4.1 Constraints

A constraint is a tuple (a

1

; a

2

; �;�) in which at least one of the terms a

1

and a

2

are not

complete, where complete means not depending on any yet unknown constants. The meaning

of the constraint is that the unknown(s) in the equality is required to be instantiated in such a

way that

a

1

= a

2

: � �

becomes a complete and true judgement.

The judgement checking algorithm produces a set of constraints, restricting the possible instan-

tiations of the yet unknowns, or a special symbol Fail, denoting that the judgement can never

become true, for any instantiations of the unknowns.

4.2 Valid judgements

The syntax of a wellformed judgement is as follows

J ::= � : Context j
 : � � j � : Type j � = � : Type � j a : � � j a = b : � �

The validity of a judgement is computed by the function J , which takes a judgement and com-

putes a set of constraints (the union of all constraints resulting from the premises) or Fail if

any of the premises computes to Fail. J is de�ned in terms of IsContext; F itsContext; IsType

254

and IsElem which are the constrained counterparts of the formation rules for contexts, sub-

stitutions, types and terms, and of the functions computing conversion of types and terms

(TypeConv and Conv). All constraints originate in the Conv function, since its purpose is to

check if two terms are convertible (equal modulo equality rules). First we give the rules of a

valid judgement, and then state the additional requirements for a true judgement. We will also

describe the conversion algorithm (Conv), but the other functions are directly corresponding

to their respective formation rules, and are omitted.

Context :

IsContext(�;�)) �

J (�;� : Context)) �

Subst :

IsContext(�;�)) �

1

IsContext(�;�)) �

2

FitsContext(�;�;�;
)) �

3

J (�;
 : � �)) �

1

[�

2

[�

3

Type :

IsContext(�;�)) �

1

IsType(�;�; �)) �

2

J (�; � : Type �)) �

1

[�

2

TypeEq :

IsContext(�;�)) �

1

IsType(�;�; �)) �

2

IsType(�;�; �)) �

3

TypeConv(�;�; �; �)) �

4

J (�; � = � : Type �))

S

4

i=1

�

i

Elem :

IsContext(�;�)) �

1

IsType(�;�; �)) �

2

IsElem(�;�; �; a)) �

3

J (�; a : � �)) �

1

[�

2

[�

3

ElemEq :

IsContext(�;�)) �

1

IsType(�;�; �)) �

2

IsElem(�;�; �; a)) �

3

IsElem(�;�; �; b)) �

4

Conv(�;�; �; a; b)) �

5

J (�; a = b : � �))

S

5

i=1

�

i

Formally, we de�ne a true judgement to be

� `

�

J i� J is complete and J (�; J)) ; (empty set of constraints)

and conversely, a judgement is said to be false i� J (�; J)) Fail. The notion of being complete

is de�ned in more detail in section 6.1.

The �rst step of the conversion algorithm is to reduce the two terms to head normal form, and

we will therefore proceed by giving the reduction rules, before the conversion is described.

4.3 Reduction rules

The reduction is performed by applying the one step reduction rules until one of the following

cases occur

� the term is on head normal form (the head of the term is a constructor or a variable, or

the term is an abstraction)

� the term is irreducible

� the term can not be reduced any further at this point, since there is a not yet de�ned

constant blocking the reduction.

255

4.3.1 One step reduction rules

The �-reduction is de�ned by explicit substitution as an \uncurried" version of the usual �-rule,

meaning that several bound variables are substituted simultaneously. The �-expansion is simply

unfolding a de�ned constant (with or without de�nition) and the last rule is matching against

given pattern equalities.

�-reduction

([x

1

; : : : ; x

n

]b)(a

1

; : : : ; a

k

) �!

�

8

>

<

>

:

bfx

1

= a

1

; : : : ; x

n

= a

n

g if n = k

[x

k+1

; : : : ; x

n

](bfx

1

= a

1

; : : : ; x

k

= a

k

g) if k < n

(bfx

1

= a

1

; : : : ; x

n

= a

n

g)(a

n+1

; : : : ; a

k

) if k > n

�-expansion

c = a : � � 2 �

c �!

�

a

c =? : � � 2 �

c �!

�

Unknown

Pattern matching

Since we require the patterns to be non overlapping, we know that in the list of patterns

associated to a given constant, in any position there must be either only pattern

variables or only constructors. This means that if a yet unknown constant is found in a

position of a constructor, we know that no other pattern can possibly match as yet and

the term is not yet reducible and if a local variable is found in a constructor position,

we know that no pattern can match at all, and the term is irreducible. Moreover,

redundant patterns are only allowed in positions where type correctness guarantees a

speci�c term, and therefore can safely be ignored in the matching. There are three

cases

� if c(p

1

; : : : ; p

n

) = a 2 � and 9
:c(p

1

; : : : ; p

n

) � c(a

1

; : : : ; a

n

) then

c(a

1

; : : : ; a

n

) �!

M

a

� the pattern matching term is not yet reducible

� the pattern matching term is irreducible

4.3.2 Reduction to head normal form

The reason for not always reaching a term on head normal form is either that the term is

c(b

1

; : : : ; b

n

), where c is an implicitly de�ned constant and at some position i, where constructors

are expected in the patterns, the b

i

is either a variable or a yet unknown constant or the unknown

is in the head position of the term. Therefore the output of the reduction will be a term pre�xed

with its status of reduction, i.e

Term�!

hnf

Hnf(Term) + Irr(Term) + NotYet(Term)

and the reduction proceeds by case analysis on the term structure

Var

x �!

hnf

Hnf(x)

256

Const

c �!

hnf

Hnf(c) if c is a constructor

c �!

hnf

NotYet(c) if c is yet unknown

c �!

hnf

P (e

0

) if c �!

�

e �!

hnf

P (e

0

), where P 2 fHnf; Irr;NotYetg

Abs

[x

1

; : : : ; x

n

]a �!

hnf

Hnf([x

1

; : : : ; x

n

]a)

App Case analysis on the head b of b(a

1

; : : : ; a

n

):

b is an abstraction

b(a

1

; : : : ; a

n

) �!

hnf

P (e

0

) if b(a

1

; : : : ; a

n

) �!

�

e �!

hnf

P (e

0

)

b is a variable or constructor

b(a

1

; : : : ; a

n

) �!

hnf

Hnf(b(a

1

; : : : ; a

n

))

b is a de�ned constant c

c(a

1

; : : : ; a

n

) �!

hnf

NotYet(c(a

1

; : : : ; a

n

)) if c is yet unknown

c(a

1

; : : : ; a

n

) �!

hnf

P (e

0

) if c �!

�

e and e(a

1

; : : : ; a

n

) �!

hnf

P (e

0

)

b is a constant de�ned by pattern matching

b(a

1

; : : : ; a

n

) �!

hnf

P (e

0

) if b(a

1

; : : : ; a

n

) �!

M

e �!

hnf

P (e

0

)

4.4 Conversion

The check for conversion is done in three stages. The �rst stage checks syntactic equality or

if either of the terms are yet unknown, the second stage assures that the type of the terms

are ground and the last stage performs the reduction to head normal form and then does the

(simpler) head conversion check. To compute

Conv(�;�; �; e

1

; e

2

)

yielding a set of constraints or Fail, we will proceed as follows

1. if e

1

� e

2

then Conv(�;�; �; e

1

; e

2

)) ; (empty set of constraints)

2. if either e

1

or e

2

is a yet unknown constant, then Conv(�;�; �; e

1

; e

2

)) f(e

1

; e

2

; �;�)g

3. if � � (x

1

: �

1

; : : : ; x

n

: �

n

)� then

e

1

(y

1

; : : : ; y

n

) = e

2

(y

1

; : : : ; y

n

) : �fx

1

:= y

1

; : : : ; x

n

:= y

n

g

in the context � extended by the new variables y

1

; : : : ; y

n

.

This rewriting of the original conversion problem is a combination of performing 1) �-

expansion, 2) �-conversion and 3) removing common abstractions of both terms, but it

is done in one step. After this transformation, we know that the type must be ground,

which means that when both sides are reduced to head normal form, neither term is an

abstraction and in an application, the head is supplied with all its arguments (useful for

pattern matching).

4. apply the reduction to head normal form to both terms, and depending on their status of

the terms we have the following table

257

e

2

ne

1

Hnf(e

1

) Irr(e

1

) NotYet(e

1

)

Hnf(e

2

) * see below Fail �

Irr(e

2

) Fail if e

1

� e

2

then ; else Fail �

NotYet(e

2

) � � �

where � = f(e

1

; e

2

; �;�)g.

* we only have to consider two cases in the head conversion, since we know that e

1

and

e

2

are on head normal form, and since the type is ground, they are not abstractions. The

only possibilities are for the heads to be either variables or constructors, applied to a

proper number of arguments.

b(a

1

; : : : ; a

n

) and b

0

(a

0

1

; : : : ; a

0

n

)

if b � b

0

then

Conv(�;�; �; a

1

; a

0

1

)) �

1

.

.

.

Conv(�;�; �; a

n

; a

0

n

)) �

n

Conv(�;�; �; b(a

1

; : : : ; a

n

); b

0

(a

0

1

; : : : ; a

0

n

)))

S

n

i=1

�

i

else Fail (for b 6� b

0

).

b and b

0

Conv(�;�; �; b; b

0

))

(

; if b � b

0

Fail otherwise

5 Environment

The environment contains three parts, the theory declarations, the dictionary and the scratch

area. The declarations in the theory and dictionary are required to correspond to true judge-

ments, while in the scratch area valid judgements are allowed. This means that the constants

in the scratch area can depend on any primitive or de�ned constant which is declared in the

environment, but the other way around is not accepted.

The environment is extended by one declaration at the time, and any kind of de�nition can be

added at any time, provided the new declaration is a valid extension of the current environment.

The only operation on the theory and the dictionary is the extension of a new declaration which

is explained below. The extension is monotone in the sense that if a judgement is true in an

environment, it is also true in any valid extension of that environment. (Note that the monotony

property does not include the scratch area de�nitions). The scratch area and its operations are

described in the next two sections.

5.1 Extending the theory

The theory contains both declarations of canonical constants (constructors) and non-canonical

constants (implicitly de�ned constants) which in addition to their type declaration have a set

of pattern equations. Therefore the extension is either a named type declaration (canonical or

non-canonical constant) or it is an extension of a pattern equation.

258

type declaration

A new primitive constant can be declared, if the type � is valid in the given context �

with respect to the current environment �:

V alid(�) � `

�

� : Type c 62 �

V alid(�; c : � �)

pattern equation

A pattern equation is an equality

c(p

1

; : : : ; p

n

) = e

where c must be known in the current environment � and c must be of arity n. The

pattern context (�) and the type (�) of c(p

1

; : : : ; p

n

) are computed, and e is checked to

be of type � (in �). Further requirements are that redundant patterns only occur in

positions where the term is uniquely determined by type checking, and that the new

pattern is non-overlapping with respect to all the other pattern equations associated

with c. The non-overlapping property as well as exhaustive pattern equations are

ensured if the pattern equation generator is used to create new equations (see section

6.3).

V alid(�) � + � `

�

c(p

1

; : : : ; p

n

) : � � + � `

�

e : �

V alid(�; c(p

1

; : : : ; p

n

) = e : � � + �)

5.2 Extending the dictionary

The dictionary can be extended by abbreviations for a term, a context or a substitution, which

correspond to true judgements. The formal rules are the following

V alid(�)

� `

�

e : �

c 62 �

V alid(�; c = e : � �)

V alid(�)

`

�

� : Context

c 62 �

V alid(�; c = �)

V alid(�)

� `

�

 : �

c 62 �

V alid(�; c =
 : � �)

6 Scratch area

The scratch area is where proof development take place. A goal is represented as a yet unknown

constant declaration, c = ? : � �, where � is the type corresponding to the proposition to be

proven, � contains the free variables (or parameters) which are allowed to occur in the proofterm,

which is yet to be �lled in. c is the name of the proof, or more correctly, an abbreviation of the

proofterm. When the proof is completed, i.e. the ? is replaced by a term which can be checked

to be of type � (in �), the proof can be moved to the dictionary as an abbreviation, and later

used as any other abbreviation. New goals can be added to the scratch area at any point, and

it is possible to work on any goal one desires, simply be always referring to the name of the

goal.

The two main purposes for the scratch area, is to achieve full
exibility of combining top-down

proof derivation with bottom-up, as well as being able to backtrack and choose an alternative

259

way of constructing the proof. Here, backtracking means more than \resume at an earlier state

of the scratch area", since what we refer to as backtracking is rather deletion of a subterm of a

proof, with the e�ect that only parts of the proof, structurally depending on the deleted term,

will be deleted as well.

The price we have to pay for this
exibility, is that besides the set of constant declarations

which are the actual goals and subgoals, we need to keep track of some additional information.

Since the declarations in the theory part and dictionary are required to correspond to complete

judgements, all the not completed declarations are kept in the scratch area, and therefore the

set of constraints restricting the instantiation of the subgoals, is kept here as well. We also

need a dependency graph which records all the dependencies between the constants, to prevent

circular de�nitions of constants (recall that abbreviations are not allowed to be recursive). Since

the actual order of the declarations in the scratch area is irrelevant (any constant declared in

the scratch area can be used anywhere, before or after it is de�ned), and we sometimes need to

sort the declarations in a topological order (dependency order), the dependency graph is very

useful for this purpose as well.

To be able to perform backtracking properly, we need to distinguish between constants which

are de�ned by re�nement and constants which are instantiated by uni�cation (required by

constraints), since these requirements might not be relevant after the backtracking. Therefore we

have a backtrack area which contains a copy of the scratch area declarations, but which constants

are not instantiated by uni�cation restrictions. The reason for choosing double representation

of the same information, instead of performing the instantiations when needed, is that in an

interactive system (especially with a window interface) we really want the information to be

visible and updated continuously. This would require unnecessary computations to keep the

declarations up to date most of the time. Instead, we recompute the scratch area from the

backtrack area only after the (hopefully more seldom) operation of backtracking.

Finally, there is a list of waiting patterns, which are patterns generated by ALF, and which are

waiting to get their left-hand side of the equation (their de�nition). A waiting patterns can be

connected to a goal, and this provides a way of constructing the term within the scratch area,

which is an advantage if the term is large and complicated.

6.1 Dependency graph

The dependency graph is a graph, recording the internal dependencies of the constants decla-

rations in the scratch area. The graph provides answers to the following questions

� which constants the term of c depends on? (denoted TermDep(c))

� which constants the type and context of c depends on? (denoted TypeDep(c))

� all constants that c depends on (denoted Dep(c) � TermDep(c) [TypeDep(c))

� the set of constants which are yet unknown (denoted U)

� the constants which are yet unknown, that c depends on? (DepU(c) � Dep(c))

260

The nodes of the graph corresponds to the constants in the current set of declarations, and the

pointers between the nodes are either term dependent or type/context dependent. The reason

for separating the two kinds of dependency is that a constant which is type/context dependent

on c, is not a meaningful declaration without c, while the term dependent constant is still

meaningful (with the term removed). We will mainly think of the graph in the term dependent

point of view, since it captures the structure of the proofterm, and we will refer to the subgraph

of c as being the part of the graph corresponding to c's (fully expanded) proofterm.

6.2 Backtrack area

The backtrack area contains a set of constant declarations, which as a subset contains the con-

stants in the scratch area, and a dependency graph concerning these constants. The constants

also occurring in the scratch area are called visible, whereas the others are invisible. The in-

tuition is that each constant declaration stands for a step in the derivation, the de�nition of

the constant stands for the \rule" applied in that step, and the new constants occurring in the

de�nition correspond to other steps in the derivation. Moreover, the invisible constants stand

for intermediate steps in the proof derivation, and the visible constant de�nitions corresponds

to derivations \collapsed" to a few major steps. If we did not instantiate constants at all by

uni�cation and also expanded the invisible constants, then the scratch area and backtrack area

declarations would be identical.

The correspondence between the scratch and backtrack area can be summarized by the following

points:

� All visible constants in the scratch area are also in the backtrack area.

� If a constant is de�ned in the scratch area, but unknown in the backtrack area, then its

de�nition is forced by uni�cation.

6.3 Waiting patterns

A waiting pattern is a tuple (c(p

1

; : : : ; p

n

); �;�;�), where � is the context of the pattern

variables, and � the local context of c. Waiting patterns are created by the operations create

pattern and expand pattern. As an example, consider the implicit constant declaration of add :

(x; y : N)N , then create pattern will add the waiting pattern

(add(x; y); N; [x; y : N]) (a pattern with only pattern variables)

to the list of waiting patterns, and expanding that pattern with respect to the variable y would

replace the same by

(add(x; 0); N; [x : N]) and (add(x; succ(y

0

)); N; [x; y

0

: N]).

Note that the generation of waiting patterns by the operations create pattern and expand pattern,

preserves the the property of the patterns of being exhaustive and non overlapping. Any of

these new waiting patterns can again be expanded with respect to another pattern variable.

The waiting pattern can be associated with a goal in the scratch area, which means that when

that goal is proven, the pattern is completed and can be moved to the theory. A waiting pattern

can also be completed by giving the de�nition directly.

261

7 Operations on the scratch area

The operations on the scratch area can be divided into three groups, proof construction, proof

completion and backtracking (or proof deletion). Proofs are constructed by re�ning a yet un-

known constant, i.e by giving a (partial) proofterm as its de�nition. The term can contain

other constants from the scratch area, constants from the theory or dictionary or variables from

the local context of the constant, besides the ordinary �-term constructions. When a proof is

completed in a satisfactory way, it can be moved from the scratch area to the dictionary, and

from that point it is no longer possible to modify. On the other hand, as long as the proof is

still in the scratch area (completed or not) it can be modi�ed by these operations. There are

two di�erent ways of backtracking, by removing the de�nition of a constant or by removing the

entire constant declaration. The former operation can be useful for retrying a (not so successful)

attempt of constructing a proof, and the latter when a lemma or subgoal is declared which was

found not to be useful.

7.1 Proof construction

For constructing a proof we have the following operations available; extending the scratch

area with new goals or lemmas, making a global replacement of a constant with its de�nition

(unfolding), and re�ning a goal. The re�nement of a goal can be done top down - by re�ning

with a constant which generates new subgoals, or bottom up - by explicitly giving the proofterm,

or a combination of the two. Each re�nement is checked to be admissible, which means that

the set of constraints is not violated.

Extending the scratch area

The scratch area can be extended with a new constant declaration, a new named

context or substitution, or a new waiting pattern. The constant declaration can be yet

unknown (new goal) or it can be partially or totally de�ned. Contexts and substitutions

can depend on yet unknown constants as well (and therefore give rise to constraints)

but can not be altered. A new waiting pattern can be added, re�ned, completed, and

moved to the theory without changing the rest of the scratch area. To summarize, any

extension of the scratch area is allowed at any time, provided that the set of constraints

is not violated.

Unfolding a de�nition

If c = e : � � is a declaration in the scratch area, then c is replaced everywhere in

the set of declarations by e, and the declaration is removed. The dependency graph

is updated, which means that each incoming pointer of node c is replaced by the set

of outgoing pointers and the node is removed. The set of constraints is not a�ected

by this operation, since all de�nitions are always expanded as far as possible in the

constraints, and the only change in the backtrack area is that c becomes invisible.

Top down and bottom up re�nements

To re�ne a constant c with a term e, we need to type check if e is of proper type. But to

be able to type check, all constants in e must be known in advance, which means that

they must be declared in the environment. Therefore is the term given as a re�nement,

\preprocessed" before type checking. The preprocess consists of doing the following

262

� if the arity of e is greater than the arity of c, which means that e needs more

arguments to be of proper type, then e is applied to a proper number of system

generated new names

� a new name in the term is considered to be a new subgoal, which means that the

type and context of such a subgoal is computed, and the new unknown constant

declaration is added to the scratch area. The computation of type and context is

done as for pattern variables.

� if the symbol is given instead of a new name, the system will generate a unique

name. All system generated names become by default invisible constants, whereas

user names become visible. The purpose of this setup is to name important

subgoals and neglect (by using) the others.

� all the transformations above are done recursively in the subterms, for partially

given terms.

Admissible re�nement

The algorithm for checking if the re�nement of the constant c with the term e is

admissible, proceeds with the following three steps, producing a re�ned scratch area if

the re�nement is admissible, and a Fail otherwise.

1. Preconditions

� c = ? : � � 2 � (c is a yet unknown constant)

� J (�; e : � �)) � (the type checking does not fail)

� c 62 DepU(e) (the new de�nition is not circular, with respect to c)

2. Updating the scratch area

� ? is replaced by e in the declaration of c

� c is replaced by e everywhere in the set of constraints and � is added to that

set.

� the dependency graph is updated, i.e TermDep(c) = the set of constants

occurring in e.

� ? is replaced by e in the backtrack area

� if c is invisible, then c is unfolded and removed (the operation Unfold)

3. Re�ning the scratch area

� the set of constraints is re�ned, which means that each constraint (e

1

; e

2

; �;�)

is rechecked by

J (�; e

1

= e

2

: � �)) �

and replaced by �. If J fails, the entire re�nement is rejected. The reason for

re�ning the set of constraints is that the replacement of e for c might have

created a failure constraint

� if the set of constraints contain a simple constraint,

(c

0

= e

0

: � �; whichisnotcircular), then the c

0

is updated to e

0

in the

scratch area, as in (2), except for the replacement in the backtrack area, which

remains the same. The reason to keep constraints, which are circular, is that

if x = y(x) is the constraint, then the equality will hold if y is instanciated

to [z]0, for example.

263

These two steps are repeated until there are no simple constraints (and the re�ne-

ment is admissible) or some re�ned constraint produces a Fail, and the re�nement

is not admissible.

7.2 Proof completion

This operation consists of two parts, to check that the construction of the constant is completed

and if so, move the constant declaration to the dictionary.

A complete proof

A precise de�nition of a complete constant (proof) is that c is complete i� c 62 U and

DepU(c) = ;. A complete de�nition or judgement is when all constants occurring

in the de�nition/judgement are complete. A proof can consist of several constant

declarations, one main constant (corresponding to the proof), and other minor constant

declarations (corresponding to lemmas). All these constants must be in the subgraph

of the proof, which means that all lemmas must be used in the proof.

Moving a complete proof to the dictionary

To move a proof c from the scratch area to the dictionary the following steps needs to

be done

� check that c is complete, and compute the set of constants fc

1

; : : : ; c

n

g, which is

used in c.

� sort c [fc

1

; : : : ; c

n

g in their topological order (c will always be last), and add

the constant declarations to the dictionary in this order, which will satisfy the

condition of a valid extension.

� the declarations of c and fc

1

; : : : ; c

n

g are simply erased from the scratch area

(including the backtrack area). There is no problem in erasing the declarations,

since the constants are complete and since they are moved and not removed (and

can still appear in other declarations). The subgraph of c is removed from the

dependency graph, since it only concerns scratch area constants.

7.3 Backtracking

Any deletion of a constant or a constant de�nition, are proceeded by an allowance check,

before the actual deletion is performed in the backtrack area, and �nally the new scratch

area is computed from the diminished backtrack area. We will proceed by �rst describing the

recomputation of a scratch area, and then the two kinds of deletion procedures are explained.

Note that the constant declarations and dependency graph mentioned in these explanations,

refer to the backtrack area.

Recompute the scratch area

Recomputation of the scratch area is done after any kind of backtracking, since the

old scratch area is not of any use at that point. The following steps will compute a

scratch area from a backtrack area, which will have the same correspondence between

them as described in section 6.2.

264

� Unfold the de�nitions of all invisible constant declarations everywhere,

� sort the remaining declarations topologically,

� extend an empty scratch area with the constant declarations in order, yielding a

set of constraints,

� and �nally, re�ne the scratch area constraints as in step (3) of the re�ne operation.

Remove a constant declaration

The entire constant declaration c = e : � � is removable if there are no other constants

depending on any of the constants c; c

1

; : : : ; c

n

, where fc

1

; : : : ; c

n

g = Dep(c), except

internal dependencies between these constants. The reason for this requirement is

simple - if there is a declaration in which the type or context depend on, say c, then the

same declaration would not make sense if c is removed. Describing that c is removable

in terms of dependency graph, is to say that the subgraph of c must be disconnected

from the rest of the graph.

Remove the de�nition of a constant

The de�nition e of a constant declaration c = e : � � can be removed (replaced by ?)

if the set of constants fc

1

; : : : ; c

n

g(� DepU(e)), which e depends on, are all removable.

The reason we want to remove the constant declarations of c

1

; : : : ; c

n

is that they all

correspond to steps in the derivation of c, and we want to remove the entire derivation.

To be more precise, the de�nition of c is allowed to be removed if the subgraph of c

is only connected externally (to other parts of the graph) via the node c. The actual

procedure of removing the de�nition take place in three steps, by �rst replacing the

de�nition of c with ?, then removing the constant declarations of c

1

; : : : ; c

n

and �nally

recompute the scratch area from this revised backtrack area. In the dependency graph,

the subgraph of c except the node c itself, is deleted.

The only reason for not allowing a removal of a constant or de�nition is that this operation

would remove some constant which is used elsewhere. Sometimes this can be arranged by

further removals of constants and/or de�nitions, but we have taken the stand point not to

do any \clever" decisions of what to remove (besides the obvious parts) and instead disallow

removals of this kind. Since anything is possible to remove, as long as it is done in the proper

order, the restriction seems motivated.

8 Validity of the scratch area - future work

As already mentioned, this is an implementation of experimental nature trying out several

ideas simultaneously. The scratch area involves most of these ideas, and this part needs to be

described more formally, hopefully reaching at a point where we can state and prove properties

such as

� if the constraints concerning a de�nition is satis�ed, then the de�nition corresponds to a

true judgement (this is now given as a de�nition)

� de�ne the relation between scratch area and backtrack area, and show that the relation

is preserved for the di�erent operations on the scratch area

265

� de�ne the partial order of \de�nedness" concerning the scratch area, and show that back-

tracking will always result in a \less de�ned" scratch area

9 Conclusion

Since this new implementation is still under developement, we will have to do much more

experiments to be able to evaluate the new features. However, a few larger examples are

carried out in ALF, such as a normalization proof for simply typed � calculus [Coqa], another

normalization proof for the typed combinator calculus [GS], as well as some properties of well-

quasi ordered sets [Fri].

References

[ACN90] L. Augustsson, T. Coquand, and B. Nordstr�om. A short description of Another Logical Frame-

work. In Proceedings of the First Workshop on Logical Frameworks, Antibes, pages 39{42, 1990.

[Coqa] Catarina Coquand. A proof of normalization for simply typed lambda calculus written in alf.

In To appear in the informal proceeding from the logical framework workshop at B�astad, June

1992.

[Coqb] Thierry Coquand. Pattern matching with dependent types. In To appear in the informal

proceeding from the logical framework workshop at B�astad, June 1992.

[Fri] Daniel Fridlender. Formalizing properties of well-quasi ordered sets in alf. In To appear in the

informal proceeding from the logical framework workshop at B�astad, June 1992.

[GS] Veronica Gaspes and Jan M. Smith. Machine checked normalization proofs for typed combi-

nator calculi. In To appear in the informal proceeding from the logical framework workshop at

B�astad, June 1992.

[Mag91] Lena Magnusson. An Implementation of Martin-L�of's Logical Framework. Licentiate Thesis,

Chalmers University of Technology and University of G�oteborg, Sweden, June 1991.

[NPS90] Bengt Nordstr�om, Kent Petersson, and Jan M. Smith. Programming in Martin-L�of 's Type

Theory. An Introduction. Oxford University Press, 1990.

266

An implementation of Constructive Set Theory, in the Lego

system

Nax Paul Mendler

Computer Science Department

University of Manchester

Manchester M13 9PL

August,1992

Remark, by Peter Aczel: This note was written by Nax Mendler, just before he left the

LF project in November 1991. My talk at the workshop was a report on his work.

This note contains comments to accompany a �le library I wrote for Randy Pollack's Lego

system.

In the paper [1] Peter Aczel described a constructive set theory (CST) and gave an interpre-

tation of it into Martin-lof type theory. I took this paper and implemented this interpretation

in the Extended Calculus of Constructions using Lego. The best and perhaps only way to study

this Lego �le is to read it or enter it into the system as you follow along in the original paper,

and I've tried to have the Lego �le match it as closely as possible.

In Lego I used the Extended Calculus of Constructions theory [2] and extensively used the

new facility for adding user-de�ned combinators and reductions. The most important example

of this is the type called V , used to interpret the universe of sets: it is the well-founded type

(Wx : Type

0

)x, and its induction combinator was used in de�ning a bisimulation relation which

models extensional equality on sets.

The only subtle technical point of the Lego implementation was that, while the original

paper assumed the existence of extensional identity types in the type theory, one can rework

a few arguments and use de�nitional equality instead. This is not too surprising: I think it

soon becomes clear whether one can or can't eliminate the use of extensional identity types in

a given piece of type theory, and in this case I was lucky.

So, in this Lego library, the propositions-as-types interpretations or translations of the ax-

ioms of CST are all \proven." The intention is that one can then go on to do some set theory

in Lego and also be able to execute the constructive content of the proofs. One example that

we thought might be of a reasonable size is to de�ne and prove some basic facts about the

hereditarily �nite sets.

Just a few sentences on what this experiment has taught me about the Lego system. I've

used Lego before, although this was my �rst long example using the combinator de�nition

facility. As I've come to expect from the system, what it is meant to do it does with style. I

already knew the basic de�nition mechanism and type synthesis would prove useful, and I was

pleased with the new user-de�ned combinator facility. I was happy with how fast the system

ran, too. But as for the question of why do any formal theorem proving on computer, I still

can not be positive | my example should only be viewed as evidence that it is possible to sit

down and enter these sorts of formal proofs, not as an endorsement of the activity.

267

References

[1] Peter Aczel. The type theoretic interpretation of constructive set theory: Choice principles.

In A.S. Troelstra and D. van Dalen, editors, The LEJ Brouwer Centenary Symposium, pages

1{40. North-Holland, 1982.

[2] Z.Luo. A higher-order calculus and theory abstraction. Information and Control, 90(1):107-

137, January 1991.

268

lambda mu-calculus: an algorithmic interpretation of classical

natural deduction

Michel Parigot, Paris 7

Abstract

We present a way of extending the paradigm "proofs as programs" to classical proofs.

The system used is a natural deduction system with multiple conclusions. It has two kinds

of reduction rules: logical and structural ones (logical ones correspond exactly to those of

intuitionistic natural deduction).

The computation mechanism can be described as a pure calculus, called lambda mu-

calculus, which extends in a simple manner lambda-calculus (mu looks like a lambda having

a potentially in�nite number of arguments). Pure lambda mu-calculus satis�es the Church-

Rosser property. Typed lambda mu -calculus satis�es also the type preservation and strong

normalisation properties.

lambda mu-calculus has a simple abstract environment based machine: the new instruc-

tions (in addition of those of lambda-calculus) are "save the stack" and "restore the stack".

269

Teaching Theory of Programming Languages Using a Logical

Framework: an Experience Report

Frank Pfenning, Carnegie Mellon

Abstract

During the Spring'92 semester I taught a graduate course \Computation and Deduc-

tion". This course explored the theory of programming languages using systems of natural

deduction. Such systems were used to specify, implement, and verify properties of functional,

imperative, and logic programming languages. The deductive approach to the speci�cation

of programming languages has become standard practice, and one of the goals of this course

was to provide a good working knowledge of how to engineer and prove properties of lan-

guage descriptions in this style. Throughout the course we used Elf as a meta-language. Elf

is a logic programming language based on the LF Logical Framework and was introduced

by means of a few extended examples. An implementation of Elf and all the examples were

available on-line for experimentation. Overall there were 29 lectures of 1.5 hours each, of

which 12 were given by students presenting projects.

The rigorous use of Elf as a metalanguage was seen as a very positive factor. Otherwise

dry exercises became programming problems, and the students learned how to employ Elf

e�ectively to implement languages and their meta-theory. Type reconstruction and a few

other features of the Elf implementation turned out to be usable and valuable. It was

generally felt that the expressive power of the LF logical framework was adequate, although

a few extensions emerged as desirable in practice. These were a simple de�nitional equality,

a limited form of subtypes and overloading, and a module system.

In my talk, I will outline the approach and content of the course. Furthermore, I will

sketch some initial ideas on how to enhance the expressive power of LF in directions moti-

vated by the course experience.

270

Typechecking in Pure Type Systems

Randy Pollack

LFCS, University of Edinburgh

July 1992

Retraction

At Baastad I claimed a proof of the Expansion Postponment property for functional PTS. Eric

Poll of Eindhoven pointed out an error in my claimed proof. As far as I know this problem is

still open.

1 Introduction

This work is motivated by two related problems. The �rst is to �nd reasonable algorithms for

typechecking Pure Type Systems [Bar91] (PTS); the second is a technical question about PTS,

the so called Expansion Postponment property (EP), which is tantalizingly simple but remains

unsolved.

There are several implementations of formal systems that are either PTS or closely related

to PTS. For example, LEGO [LP92] implements the Pure Calculus of Constructions [CH88]

(PCC), the Extended Calculus of Constructions [Luo90] and the Edinburgh Logical Frame-

work [HHP87]. ELF [Pfe89] implements LF; CONSTRUCTOR [Hel91] implements arbitrary

PTS with �nite set of sorts. Are these implementations actually correct? It is not di�cult to

�nd a natural e�cient algorithm that is provably sound (Section 3), but completeness is more

di�cult. In fact Jutting has shown typechecking is decidable for all normalizing PTS with a

�nite set of sorts [vBJ92], but his algorithm, which computes the normal forms of types, is not

suitable for practical use.

1.1 The Decision Problems

We consider two problems about PTS. The Type Checking Problem (TCP) is to decide, given

�, M , and A, whether or not � ` M : A is derivable. In implementations we want to enter a

term and have the program compute its type in the current context. For PTS with types unique

up to conversion, the functional PTS, this Type Synthesis Problem (TSP) is clear: given � and

M , compute a term A such that � ` M : A, or return failure if no such A exists. In general,

however, PTS do not have unique types, and an exact statement of TSP involves a notion of

type scheme which will be postponed to Section 2.3.

271

Let s range over fProp,Typeg, the sorts of PCC.

ax � ` Prop : Type

start

� ` A : s

�[x:A] ` x : A

x fresh

weak

� ` � : C � ` A : s

�[x:A] ` � : C

x fresh

pi

�[x:A] ` B : s

� ` fx:AgB : s

lda

�[x:A] ` M : B

� ` [x:A]M : fx:AgB

B 6= Type

app

� ` M : fx:AgB � ` N : A

� ` M N : [N=x]B

conv

� ` M : A � ` B : s A ' B

� ` M : B

Table 2: The Pure Calculus of Constructions (PCC)

1.2 An Example: Typechecking Pure Constructions

Without being too precise for the moment Table 2 presents typing rules for the Pure Calculus of

Constructions (PCC). Consider the type synthesis problem for PCC: given � and M , compute

a term A such that � ` M : A, or return failure if no such A exists. The natural approach is to

look for a derivation of � ` M : guided by the shape of the subject, � and M . The only
aw

in this plan is the rule conv, which may be used at any point in a derivation without changing

the shape of the subject. Putting it the other way around, you cannot tell when to use conv

in a derivation by looking at the shape of the subject. It is clear we must control the conv

rule. In my �rst typechecker for PCC, coded in 1986, my approach was to compute the normal

forms of types. This eliminates the need for conv, and, since PCC is normalizing, leads to a

sound and complete algorithm if done correctly. (For example, you must check that a term is

well-typed before trying to normalize it!) This approach is terribly slow, and clearly could not

be used to check large bodies of mathematics.

In 1987, G�erard Huet showed me a collection of techniques for e�ciently typechecking PCC

that he collected into an abstract machine called the Constructive Engine [Hue87]. The most

important aspect of the Constructive Engine is shown abstractly in Table 3. The correctness

lemma for this system is

Lemma 1.1 (1) If � `

ce

M : A then � ` M : A.

(2) If � ` M : A then there exists A

0

such that A ' A

0

and � `

ce

M : A

0

Table 2, because of its non-determinstic use of conv, allows many derivations over a given

subject, even deriving structurally di�erent types for a single subject. (It is a property of PCC

that all those types are convertible.) In contrast, the system of Table 3 has no conv rule and

allows at most one derivation over a given � and M , and that derivation uniquely determines

272

Notation: we write � `

ce

M :� A for � `

ce

M : A

0

and A

0

� A, where � is �-reduction and

wh

�

is �-weak-head-reduction.

ce-ax � `

ce

Prop : Type

ce-start

� `

ce

A :� s

�[x:A] `

ce

x : A

x fresh

ce-weak

� `

ce

� : C � `

ce

A :� s

�[x:A] `

ce

� : C

x fresh

ce-pi

�[x:A] `

ce

B :� s

� `

ce

fx:AgB : s

ce-lda

�[x:A] `

ce

M : B

� `

ce

[x:A]M : fx:AgB

B 6= Type

ce-app

� `

ce

M :

wh

� fx:AgB � `

ce

N : A

0

A ' A

0

� `

ce

M N : [N=x]B

Table 3: A Preliminary Constructive Engine: syntax-directed PCC

the type it derives for M in �. Consequently Table 2 cannot derive all the structurally di�erent

types for M in �, but only one representative of the conversion class.

Notice that for correctness we could allow arbitrary reduction sequences where we have

written weak-head reduction in ce-app, but the restriction to deterministic weak-head reduction

is necessary to make this rule syntax directed; otherwise we wouldn't know when to stop reducing

in the left premiss, and A and B wouldn't be uniquely determined.

We can think of Lemma 1.1 as saying all uses of conv for expanding a type can be permuted

downwards in a derivation through all premisses of all rules, and all uses of conv for reducing

a type can be permuted downwards in a derivation through the left premiss of weak and the

premiss of lda. The fact that Table 3 is syntax directed is extremely delicate, although we

didn't know this in 1987 because the proof of Lemma 1.1 is quite straightfoward. In PTS it is

still unproven that type expansion can always be deferred to the end of derivations, and we know

by counterexample (Example 3.2) that type reduction cannot always be permuted through the

premiss of lda.

Table 3 can already be thought of as a sound and complete type synthesis algorithm for

PCC, but there is one other signi�cant optimization in the Constructive Engine that is worth

mentioning, even though it is not delicate, and gives no problems in the case of PTS. In the

rules ce-weak and ce-app � occurs in two premisses, and its validity must be checked in

the subderivations above both premisses. It is much more e�cient to assume we start with a

valid context, and only check that it remains valid whenever we extend it. This is also more in

keeping with the use of actual implementations, where we want to work in a \current context"

of mathematical assumptions (and also of de�nitions and proved theorems, but I do not address

de�nitions in this note). This is shown abstractly in Table 4. The new premisses in ceo-pi and

ceo-lda are to check that the extended contexts in the second premisses are valid, assuming

that � is valid. The correctness lemma for this system is

273

Notation: we write � `

ceo

M :� A for � `

ceo

M : A

0

and A

0

� A.

ceo-valid � Valid

� Valid � `

ceo

A :� s

�[x:A] Valid

x fresh

ceo-prop � `

ceo

Prop : Type

ceo-var �[x:A]� `

ceo

x : A

ceo-pi

� `

ceo

A :� s

0

�[x:A] `

ceo

B :� s

� `

ceo

fx:AgB : s

ceo-lda

� `

ceo

A :� s �[x:A] `

ceo

M : B

� `

ceo

[x:A]M : fx:AgB

B 6= Type

ceo-app

� `

ceo

M :

wh

� fx:AgB � `

ceo

N : A

0

A ' A

0

� `

ceo

M N : [N=x]B

Table 4: An Optimised Constructive Engine

Lemma 1.2 (1) If � `

ceo

M : A and � Valid then � ` M : A.

(2) If � ` M : A then there exists A

0

such that A ' A

0

and � `

ceo

M : A

0

Setting aside the question of how to test conversion, we consider Table 4 to be a good algorithm

for typechecking PCC.

1.3 The remainder of this note

For arbitrary PTS there are several new di�culties. The most troublesome is that we don't

know how to eliminate the conversion rule in favor of a syntax-directed system for arbitrary

PTS. The di�culty in following the Constructive Engine approach is discussed in Section 3.

In Section 4 we give a syntax-directed presentation of a restricted class of PTS that includes

PCC, and the Edinburgh Logical Framework (LF). (Thus, we �nally have a proof of an e�cient

and natural algorithm for typechecking LF.) It may be of interest that the correctness of the

syntax-directed system for this class of PTS has been machine checked in LEGO [LP92], except

for a few facts about reduction and conversion. This class also has the Expansion Postponment

property.

In PCC there are only two sorts, Prop and Type, and PCC has types unique up to conversion.

In general a PTS may have in�nitely many sorts and fail to have unique types. Even if we have

a syntax-directed presentation for a class of PTS, where all derivations over a given subject

have the same shape, undecidable and non-deterministic side conditions may complicate an

algorithmic interpretation. Such issues are well understood, and I show how to handle them in

Section 4.4.

2 Pure Type Systems

In order to �x notation we de�ne PTS and state some well known properties. A PTS, P, is a

4-tuple (Cnst;Sort;Ax;Rule) where

274

� Cnst, a set of constants (ranged over by c)

� Sort � Cnst, a set of sorts, (ranged over by s)

� Ax � Cnst� Sort, a set of axioms of the form Ax(c:s)

� Rule � Sort� Sort� Sort, a set of rules of the form Rule(s

1

; s

2

; s

3

)

Syntax Let x range over Var, an in�nite set of variables disjoint from Cnst. The raw syntax

of terms, contexts and judgements of PTS P = (Cnst;Sort;Ax;Rule) is given by:

atomic terms � ::= x variable

j c constant

terms M ::= � atomic

j [x:M]M lambda

j fx:MgM Pi

j MM application

contexts � ::= � empty

j �[x:M]

judgement J ::= � ` M : M

M , N , A, B, C, D, E, a, b range over terms; �, � over contexts.

FV (M) denotes the free variables of M , de�ned as usual. If � = [x

1

:A

1

] : : : [x

n

:A

n

] then

V (�) is de�ned as the set fx

1

; : : : ; x

n

g, and FV (�) as the set

S

fFV (A

1

); : : : ;FV (A

n

)g. If

� = �

1

[x:A]�

2

we say x:A 2 �. � � � is de�ned to mean x:A 2 � implies x:A 2 �.

Reduction Substitution, �-reduction, and �-conversion are de�ned as usual for such lan-

guages. Write [N/x]B for \capture-avoiding substitution of N for free ocurrances of x in B",

A � B for \A reduces to B", A

wh

� B for \A weak-head reduces to B" and A ' B for \A con-

verts to B". �-reduction has the Church-Rosser (CR) property. nf (A;B) is the relation \B is

the normal form of A".

Typing The judgements of P are those derivable from the axioms and inference rules of

Table 5. As usual we abuse notation by writing � ` M : A to mean the judgement is derivable.

We say � Valid i� there exist M and A with � ` M : A.

The cognoscenti will notice that the rule weak in Table 5 is not the usual one. I have

restricted weakening to atomic subjects for the purpose of discussing typechecking, since this

presentation is more syntax-directed. It is straightfoward to see that the full weakening rule

is admissible in this system. In fact this presentation gives a better development of the basic

metatheory because no case of the Generation Lemma except start depends on the Thinning

Lemma. The basic metatheory of this presentation of PTS has been formalized in LEGO

2.1 Basic Theorems

The basic meta-theoretic properties of PTS are presented in [Bar92, Ber90, GN91, vBJ92]. The

ones we will explicitly use are summarized here

Lemma 2.1 (Thinning Lemma) If � ` M : A, � � �, and � Valid, then � ` M : A.

275

ax � ` c : s Ax(c:s)

start

� ` A : s

�[x:A] ` x : A

x fresh

weak

� ` � : C � ` A : s

�[x:A] ` � : C

x fresh

pi

� ` A : s

1

�[x:A] ` B : s

2

� ` fx:AgB : s

3

Rule(s

1

; s

2

; s

3

)

lda

�[x:A] ` M : B � ` fx:AgB : s

� ` [x:A]M : fx:AgB

app

� ` M : fx:AgB � ` N : A

� ` M N : [N=x]B

conv

� ` M : A � ` B : s A ' B

� ` M : B

Table 5: The Typing Judgement of a PTS

Lemma 2.2 (Generation Lemma) (1) If � ` c : A then there exists s such that Ax(c:s) and

A ' s.

(2) If � ` x : A then there exists A

0

such that x:A

0

2 � and A ' A

0

.

(3) If � ` fx:BgD : A then there exist s

1

; s

2

; s

3

such that Rule(s

1

; s

2

; s

3

), � ` B : s

1

,

�[x:B] ` D : s

2

, and A ' s

3

.

(4) If � ` [x:B]d : A then there exist s and D such that �[x:B] ` d : D, � ` fx:BgD : s, and

A ' fx:BgD.

(5) If � ` b d : A then there exist B;D such that � ` b : fx:DgB, � ` d : D, and A ' [d=x]B.

Lemma 2.3 (Correctness of Types) If � ` b : B then there exists s such that B ' s or

� ` B : s.

Lemma 2.4 (Subject and Predicate Reduction) If � ` b : B, � � �

0

, b � b

0

, and B � B

0

,

then �

0

` b

0

: B

0

.

A PTS is called functional if Ax(c:s) and Ax(c:s

0

) imply s = s

0

, and Rule(s

1

; s

2

; s

3

) and

Rule(s

1

; s

2

; s

0

3

) imply s

3

= s

0

3

. Functional PTS have types unique up to conversion.

2.2 A First Look at Decidability

We cannot expect to decide typechecking for a PTS whose axioms or rules are not decidable

(although none of the basic metatheory mentioned so far uses such an assumption), so from

now on assume they are decidable.

At �rst, blinded by the beauty of the Constructive Engine, I conjectured that all normalizing

PTS have decidable TCP. This belief is sadly mistaken:

276

Example 2.1 Let T(i; n) mean \the i

th

Turing machine, when started with i on it's input tape,

halts in exactly n steps". For the PTS

undecidable

Cnst natural numbers

Sort natural numbers

Ax f (i:n) j T(i; n) g

Rule ;

we have, for any i, [x:i] ` x : i i� there exists n with Ax(i:n) i� the i

th

Turing machine halts on

input i. This PTS is functional and strongly normalizing (there are no well typed redices), but

has undecidable TCP.

2.3 Most General Type Schemes

Is there hope to �nd systems of syntax-directed derivations for non-functional PTS? Suppose

there are judgements of the shape � ` b : fx

1

:B

1

gs

1

and � ` b : fx

1

:C

1

gfx

2

:C

2

gs

2

where the

types are in normal form. We wouldn't expect a derivation determined by the shape of �

and b to construct both of these types since they have di�erent shapes. In fact this problem

doesn't arise. I believe the following property was �rst observed by Luo for ECC [Luo90], and

independently discovered by Jutting for PTS [vBJ92].

Lemma 2.5 If � ` a : A and � ` a : B then either (i) A ' B, or (ii) there exist s

A

; s

B

; n � 0;

C

1

; : : : ; C

n

such that A � fx

1

:C

1

g : : : fx

n

:C

n

gs

A

and B � fx

1

:C

1

g : : : fx

n

:C

n

gs

B

As a corollary we have that if � ` a : A and � ` a : B then there is an A

0

, obtained by replac-

ing some of the sort occurrences in A by other sorts, such that B ' A

0

. We introduce some

machinery to talk about this idea,

Sort Variables and Constraints Let � be a new class of sort variables disjoint from Cnst

and Var, ranged over by �. Schematic terms, ranged over by X, Y , Z, U , are terms that may

contain sort variables as well as sorts

� ::= x j c j �

X ::= � j [x:X]X j fx:XgX j X X

SV (X) is the set of sort variables occurring in X.

A sort asignment, ranged over by ', is a partial function assigning sorts to a �nite set of

sort variables. Dom (') is the domain of ' as a function.

Reduction, conversion, and sort assignments are extended to schematic terms in the obvious

way. We call 'X an instance of X. Notice that ' respects the structure of terms, and respects

redices, so can be thought of as a bijection between the reduction sequences from X and the

reduction sequences from 'X. In particular X has a normal form exactly when 'X does.

Most General Type Schemes By Lemma 2.5, if � ` M : A then there is an X such that

every type for M in � converts with an instance of X. The problem is to �nd just those instances

of X that actually are correct types for M in �.

A constraint is any formula whose only free variables are sort variables. We have in mind

formulas of the form Ax(c:�), Rule(�

1

; �

2

; �

3

), and �

1

= �

2

. C, D, E , F , G, range over �nite sets

of constraints. SV (C) is the set of sort variables occurring in C. A sort assignment satis�es a

277

constraint set, written ' j= C, i� SV (C) � Dom (') and each of the propositions in 'C is true.

A constraint set is satis�able, or consistent if there is some sort assignment satisfying it.

Assume we have speci�ed a class of constraints such that the consistency of every set of

such constraints is decidable. For example, for a PTS with �nite Sort, the class including all

formulas of the form Ax(c:�), Rule(�

1

; �

2

; �

3

), and �

1

= �

2

is such a class (remember, we are

assuming Ax and Rule to be decidable). Let Z be such a class, although we will usually keep

this class implicit.

A pair X; C (where C � Z) is a most general type scheme (mgts) for �;M (with respect to

Z) i� (i) whenever ' j= C then � ` M : 'X , and (ii) whenever � ` M : A there is a ' j= C such

that A ' 'X .

The Type Synthesis Problem (TSP) for a PTS is, to �nd a class, Z, and an algorithm that,

given � and M , computes a most general type scheme, X; C, for �;M with respect to Z.

We will now show that, for a given PTS, if TSP is solvable then TCP is also solvable.

Schematic Conversion In order to compute the constraints under which two schematic

terms are convertible we need a sort-variables uni�cation algorithm:

�

1

f�

1

=�

2

g

= �

2

c

1

;

= c

2

x

;

= x

X

1

C

= Y

1

X

2

D

= Y

2

fx:X

1

gX

2

C[D

= fx:Y

1

gY

2

X

1

C

= Y

1

X

2

D

= Y

2

[x:X

1

]X

2

C[D

= [x:Y

1

]Y

2

X

1

C

= Y

1

X

2

D

= Y

2

X

1

X

2

C[D

= Y

1

Y

2

Now we have the schematic conversion algorithm:

nf (X;X

0

) nf (Y; Y

0

) X

0

C

= Y

0

X

C

' Y

Lemma 2.6 For normalizing X and Y (1) if X

C

' Y and ' j= C then 'X ' 'Y ,

(2) if 'X ' 'Y then there exists C such that X

C

' Y and ' j= C,

(3) it is decideable whether or not there exists a C such that X

C

' Y .

This algorithm is not very e�cient, and in practice we try to minimize the reduction involved

in checking that two terms convert.

TCP Now assume that for a given normalizing PTS we have a solution to TSP, and we want

to use that to solve TCP: we are given �;M;A, and want to decide whether or not � ` M : A.

Let X; C be an mgts for �; A and Y;D be an mgts for �;M . If C is not consistent, then A is

not a type in �; if D is not consistent, then M has no type in �. If both C and D are consistent

then A and X are normalizing, so use the schematic conversion algorithm to compute X

E

' A.

If C [D [E is consistent then � ` M : A is derivable, otherwise not. (Some of the algorithms

may return explicit failure which I'm reading as returning an inconsistent constraint set.)

3 Expansion Postponment and Syntax-Directed derivations

Our �rst goal for �nding a Type Synthesis Algorithm for PTS is to �nd a syntax-directed

derivation system equivalent to Table 5 in some way analogous to the Constructive Engine.

278

er-ax � `

er

c : s Ax(c:s)

er-start

� `

er

A : s

�[x:A] `

er

x : A

x fresh

er-weak

� `

er

� : C � `

er

A : s

�[x:A] `

er

� : C

x fresh

er-pi

� `

er

A : s

1

�[x:A] `

er

B : s

2

� `

er

fx:AgB : s

3

Rule(s

1

; s

2

; s

3

)

er-lda

�[x:A] `

er

M : B � `

er

fx:AgB : s

� `

er

[x:A]M : fx:AgB

er-app

� `

er

M : fx:AgB � `

er

N : A

� `

er

M N : [N=x]B

er-red

� `

er

M : A A � B

� `

er

M : B

er-exp

� ` M : A � ` B : s B � A

� ` M : B

Table 6: The expansion/reduction type system (ERTS)

The only troublesome rule is conv. The natural generalization of the Constructive Engine,

Table 9, does not work, and to clarify the situation we consider some intermediate systems �rst.

In informally describing the Constructive Engine I suggested we view the conversion rule as

two rules, one for expansion and one for reduction. The system ERTS of Table 6 makes this

precise.

Lemma 3.1 � ` M : A i� � `

er

M : A.

Proof) By induction on the derivation of � ` M : A. Assume the derivation ends with

conv

� ` M : A � ` B : s A ' B

� ` M : B

By IH � `

er

M : A and � `

er

B : s. By Church-Rosser B and A have a common reduct, B

0

, so

� `

er

M : B

0

by red and � `

er

M : B by exp.

(By induction on the derivation of � `

er

M : A. If the derivation ends with er-red, use

Predicate Reduction of PTS; if it ends with er-exp, use conv.

Expansion Postponment Continuing by analogy with the Constructive engine, we try to

prove that all uses of er-exp can be deferred until the end of a derivation, or equivalently that

er-exp can be permuted downwards through all premisses of all rules. Consider the system

279

r-ax � `

r

c : s Ax(c:s)

r-start

� `

r

A : s

�[x:A] `

r

x : A

x fresh

r-weak

� `

r

� : C � `

r

A : s

�[x:A] `

r

� : C

x fresh

r-pi

� `

r

A : s

1

�[x:A] `

r

B : s

2

� `

r

fx:AgB : s

3

Rule(s

1

; s

2

; s

3

)

r-lda

�[x:A] `

r

M : B � `

r

fx:AgB : s

� `

r

[x:A]M : fx:AgB

r-app

� `

r

M : fx:AgB � `

r

N : A

� `

r

M N : [N=x]B

r-red

� `

r

M : A A � B

� `

r

M : B

Table 7: The reduction type system (RTS)

RTS of Table 7. It is trivial that RTS is sound for PTS, i.e. that � `

r

M : A implies � ` M : A.

However the expansion postponment conjecture, that RTS is complete for PTS

Conjecture 3.1 (Expansion Postponment) If � ` M : A then there exists A

0

such that

A � A

0

and � `

r

M : A

0

has resisted all attempts to date for any interesting class of PTS. (In Section 4 I show that a

class called semi-full, generalizing the full PTS, has this property.)

If we could prove Conjecture 3.1, would we have a syntax directed presentation of PTS?

Asking which premisses r-red can be permuted downwards through, we get the system NSDTS

of Table 8, which is equivalent to RTS.

Lemma 3.2 (1) If � `

nsd

M : A then � `

r

M : A

(2) If � `

r

M : A then there exists A

0

such that � `

nsd

M : A

0

and A

0

� A

This is straightfoward to prove.

In the Constructive Engine, reduction could be deferred through the premiss of lda. In

NSDTS, reduction gets \stuck" at the left premiss of nsd-lda, and for this reason NSDTS is

not syntax-directed: we cannot tell from the shape of [a:A]M how much reduction to do to

�nd B. Can we hope to remove this de�ciency? Consider system SDTS of Table 9, which is

identical to NSDTS except it doesn't allow reduction after the left premiss of the lambda rule.

Clearly � `

sd

M : A implies � `

nsd

M : A, so we have, somewhat inexactly,

SDTS) NSDTS, RTS) ERTS, PTS

Expansion Postponment is the conjecture that RTS(ERTS. Now we ask whether

SDTS (NSDTS, i.e. whether EP implies a system of syntax-directed derivation. For non-

functional PTS this is false.

280

Notation: we write � `

nsd

M :� A for � `

nsd

M : A

0

and A

0

� A.

nsd-ax � `

nsd

c : s Ax(c:s)

nsd-start

� `

nsd

A :� s

�[x:A] `

nsd

x : A

x fresh

nsd-weak

� `

nsd

� : C � `

nsd

A :� s

�[x:A] `

nsd

� : C

x fresh

nsd-pi

� `

nsd

A :� s

1

�[x:A] `

nsd

B :� s

2

� `

nsd

fx:AgB : s

3

Rule(s

1

; s

2

; s

3

)

nsd-lda

�[x:A] `

nsd

M :� B � `

nsd

fx:AgB : s

� `

nsd

[x:A]M : fx:AgB

nsd-app

� `

nsd

M :� fx:AgB � `

nsd

N : A

0

A ' A

0

� `

nsd

M N : [N=x]B

Table 8: The nearly syntax-directed type system (NSDTS)

Notation: we write � `

nsd

M :� A for � `

sd

M : A

0

and A

0

� A.

sd-ax � `

sd

c : s Ax(c:s)

sd-start

� `

nsd

A :� s

�[x:A] `

sd

x : A

x fresh

sd-weak

� `

sd

� : C � `

nsd

A :� s

�[x:A] `

sd

� : C

x fresh

sd-pi

� `

nsd

A :� s

1

�[x:A] `

nsd

B :� s

2

� `

sd

fx:AgB : s

3

Rule(s

1

; s

2

; s

3

)

sd-lda

�[x:A] `

sd

M : B � `

sd

fx:AgB : s

� `

sd

[x:A]M : fx:AgB

sd-app

� `

nsd

M :� fx:AgB � `

sd

N : A

0

A ' A

0

� `

sd

M N : [N=x]B

Table 9: The syntax-directed type system (SDTS)

281

Example 3.2 We show that NSDTS types terms that SDTS does not type, i.e.SDTS 6(NSDTS,

by modifying an example that Jutting [vBJ92] uses to show non-functional PTS may not have

Subject Expansion.

pathological

Cnst �;4;4

0

;2

Sort �;4;4

0

;2

Ax (�:4); (�:4

0

); (4:2)

Rule (2;2;2;); (4;4

0

;2)

Consider A = ([x:4]�) �. To compute all the types SDTS gives A, build the only possible

derivation over A (since SDTS is syntax-directed!) and try to �ll in any holes left un-determined

due to the non-functionality of this pathological PTS. (We will use this technique more uniformly

in Section 4.4.)

.

.

.

[x:4] `

sd

� : X

� `

sd

4 : 2

.

.

.

[x:4] `

sd

X : Z

� `

sd

fx:4gX : 2

� `

sd

[x:4]� : fx:4gX

� `

sd

� : 4 4 ' 4

� `

sd

A : [�=x]X

First, Z = 2 because only the �rst rule can be used to type fx:4gX. Now observe that X = 4

or X = 4

0

since these are the only types of �. But (4

0

:2) 62 Ax so X = 4 is the only solution,

and we have only � `

sd

A : 4. (In fact, even in PTS this is the only solution. Since � ` A : 4,

A � �, � ` � : 4

0

, but not � ` A : 4

0

, this PTS lacks Subject Expansion.)

Now observe [y:A] `

nsd

[z:�]y : fz:�g�

.

.

.

[y:A] `

nsd

y : A

.

.

.

[y:A] `

nsd

� : 4

[y:A][z:�] `

nsd

y : A � �

.

.

.

[y:A] `

nsd

� : 4

.

.

.

[y:A][z:�] `

nsd

� : 4

0

[y:A] `

nsd

fz:�g� : 2

[y:A] `

nsd

[z:�]y : fz:�g�

but SDTS does not assign any type to [z:�]y in context [y:A] as we see by trying to construct

such a derivation

.

.

.

[y:A][z:�] `

sd

y : A

.

.

.

[y:A] `

sd

� : 4

.

.

.

[y:A][z:�] `

sd

A : Y

[y:A] `

sd

fz:�gA : X

[y:A] `

sd

[z:�]y : fz:�gA

By the analysis above, Y =4, but there is no rule for (4;4;), so there is no X making this

a correct derivation.

This PTS is strongly normalizing, as can be seen from the PTS-morphism [Geu90]

� 7! Type(0) 4 7! Type(1) 4

0

7! Type(1) 2 7! Type(2)

into a predicative part of ECC. Since this mapping preserves sorts, axioms, and rules, if a term

is well-typed in pathological, its image is well-typed in ECC, hence strongly normalizing. But

the map also preserves redices, so the original term is strongly normalizing. It is clearly the

non-functionality of pathological that is the problem.

282

What is the Di�culty? The di�culty in proving EP and that in proving SDTS (NSDTS

are similar. In the lda rule, the predicate of the left premiss, B, occurs in the subject of the

right premiss, fx:AgB. This is the only rule in which this happens. For any of the systems above

without full conversion we cannot derive all types of all terms; the best correctness property

we can have allows some extra conversion or reduction after a derivation. In lda, then, the

B occurring in the left premiss will be di�erent than the B occurring in the right premiss. If

we could prove subject reduction of RTS the proof would go through, but the proof of subject

reduction for RTS founders on the same di�culty. We have seen that SDTS (NSDTS must

fail in general. (I don't know whether it is true for functional PTS.) Is this a hint that EP fails

in general? If so, is EP true for functional PTS?

Recently Jutting has been looking at alternative \well-formedness" conditions to replace the

right premiss of lda. He has had great sucess in �nding syntax-directed systems, which can be

made into typechecking algorithms. I do not know whether this sheds any light on EP.

4 Semi-Full PTS and Typechecking

A PTS is full i� for all s

1

; s

2

2 Sort there exists s

3

2 Sort such that Rule(s

1

; s

2

; s

3

). In full PTS

the troublesome right premiss of the lda rule can be simpli�ed. Consider the rule

lda

�[x:A] ` M : B � ` fx:AgB : s

� ` [x:A]M : fx:AgB

The right premiss guarantees the type of the lambda being constructed is itself well formed.

We know from the left premiss of lda that � ` A : s

A

for some s

A

. Also, by Correctness of

Types applied to the left premiss there is some s

B

such that either �[x:A] ` B : s

B

or B = s

B

.

In the �rst case fullness of a PTS guarantees fx:AgB has some type. Thus, for full PTS, we

can soundly replace the right premiss of lda with a side condition that B is not identically a

sort that itself has no sort. We can generalize this idea somewhat beyond full PTS:

De�nition 4.1 A PTS is semi-full i� for all s

1

2 Sort, if there exist s

2

; s

3

2 Sort such that

Rule(s

1

; s

2

; s

3

), then for all s

2

2 Sort there exist s

3

2 Sort such that Rule(s

1

; s

2

; s

3

).

While the Pure Calculus of Constructions, �P!, and various extensions with Type universes

are full, the Edinburgh Logical Framework, �P , is semi-full. Although [HHP92] proves LF is

decidable, it gives an algorithm to compute the normal forms of types. The argument below

shows why the algorithm actually used in LEGO, and probably in ELF, is both sound and

complete.

We will give a syntax-directed derivation system for semi-full PTS, and from it derive an

algorithm for typechecking which is a natural generalization of Huet's Constructive Engine.

4.1 Aside on Topsorts

We begin with a de�nition and a lemma of Berardi [Ber90].

De�nition 4.2 A sort s is a topsort (written s 2 Sort

T

) i� for all t 2 Sort, not Ax(s:t).

Lemma 4.1 If s 2 Sort

T

and � ` M : A then

(1) s does not occur in M , and

(2) if s occurs in A then s = A.

283

sf-ax � `

sf

c : s Ax(c:s)

sf-start

� `

sf

A : s

�[x:A] `

sf

x : A

x fresh

sf-weak

� `

sf

� : C � `

sf

A : s

�[x:A] `

sf

� : C

x fresh

sf-pi

� `

sf

A : s

1

�[x:A] `

sf

B : s

2

� `

sf

fx:AgB : s

3

Rule(s

1

; s

2

; s

3

)

sf-lda

�[x:A] `

sf

M : B � `

sf

A : s

� `

sf

[x:A]M : fx:AgB

B 62 Sort

T

Rule(s; s

2

; s

3

)

sf-app

� `

sf

M : fx:AgB � `

sf

N : A

� `

sf

M N : [N=x]B

sf-conv

� `

sf

M : A � `

sf

B : s A ' B

� `

sf

M : B

Table 10: The typing judgement of a semi-full PTS (SFTS)

Prove (1) by straightfoward induction over the derivation of � ` M : A. Prove (2) similarly,

using (1).

The Correctness of Types lemma for PTS is somewhat unsatisfying: why doesn't it read

\If � ` b : B then for some s 2 Sort � ` B : s"? The reason is the existence of topsorts, and

we would like to improve Correctness of Types to read \If � ` b : B then for some s 2 Sort

� ` B : s or (B = s and s 2 Sort

T

)". This is not quite right, because even if Ax is decideable,

Sort

T

may not be. Furthermore, topsort is a negative notion; we need the more informative

concept

De�nition 4.3 (1) A sort, s, is a typedsort (written s 2 Sort

T

) i� there exists t 2 Sort such

that Ax(s:t).

(2) A PTS has the decidable typedsort property (DTP) i� for all s 2 Sort, s 2 Sort

T

or s 62 Sort

T

.

Lemma 4.2 If a PTS has DTP and � ` b : B then 9s 2 Sort such that � ` B : s or (s 2 Sort

T

and B = s).

Proof By the Correctness of Types lemma, � ` B : s or B = s. In the �rst case we are done.

In the second case, by DTP, s 2 Sort

T

or s 62 Sort

T

. In the �rst case, for some t, Ax(s:t); hence

� ` B : t. In the second case s 2 Sort

T

as required.

4.2 Deriving the Judgement of Semi-Full PTS

For semi-full PTS with DTP, the derivation system SFTS of Table 10 is sound and complete

with respect to the system PTS of Table 5.

284

Lemma 4.3 For a semi-full PTS with DTP

(1) if � ` M : A then � `

sf

M : A, and

(2) if � `

sf

M : A then � ` M : A.

Proof (1) By induction over the derivation of � ` M : A. The only interesting case is lda,

so assume the derivation ends with

lda

.

.

.

�[x:A] ` M : B

.

.

.

� ` fx:AgB : s

� ` [x:A]M : fx:AgB

By IH �[x:A] `

sf

M : B and � `

sf

fx:AgB : s. By the Generation Lemma for SFTS, there exists

s

A

; s

B

; s

3

2 Sort such that � `

sf

A : s

A

, �[x:A] `

sf

B : s

B

, and Rule(s

A

; s

B

; s

3

). Lemma 4.1 on

the right IH shows B 62 Sort

T

. Thus, by sf-lda conclude � `

sf

[x:A]M : fx:AgB.

(2) By induction over the derivation of � `

sf

M : A. The only interesting case is sf-lda,

so assume the derivation ends with

sf-lda

.

.

.

�[x:A] `

sf

M : B

.

.

.

� `

sf

A : s

� `

sf

[x:A]M : fx:AgB

B 62 Sort

T

Rule(s; s

2

; s

3

)

By IH �[x:A] ` M : B and � ` A : s. By Lemma 4.2 on the left IH and the fact that B 62 Sort

T

,

there is a sort s

B

such that �[x:A] ` B : s

B

. Since we are in a semi-full PTS, there is a sort t

with Rule(s; s

B

; t). By pi and lda conclude � ` [x:A]M : fx:AgB.

4.3 A Syntax-Directed System for Semi-Full PTS

System SFTS is not syntax-directed, but sf-lda does not have the troublesome right premiss.

It is now straightfoward to give a syntax-directed system, SDSFTS of Table 11, which is sound

and complete for SFTS.

Lemma 4.4 For a semi-full PTS with DTP:

(1) if � `

sdsf

M : A then � `

sf

M : A,

(2) if � `

sf

M : A then there exists A

0

s.t. � `

sdsf

M : A

0

and A ' A

0

.

Proof (1) By induction over the derivation of � `

sdsf

M : A, noticing that by Lemma 4.3 SFTS

has Predicate Reduction for semi-full PTS with DTP. We do the case where the derivation ends

with sdsf-app

sdsf-app

.

.

.

� `

sdsf

M :� fx:AgB

.

.

.

� `

sdsf

N : A

0

A ' A

0

� `

sdsf

M N : [N=x]B

By IH � `

sf

M : K where K � fx:AgB, and � `

sf

N : A

0

where A ' A

0

. By Church-Rosser

A and A

0

have a common reduct, A

00

. Thus K � fx:A

00

gB, and by Predicate Reduction

� `

sf

M : fx:A

00

gB. By sf-app conclude � `

sf

M N : [N=x]B as required.

285

sdsf-ax � `

sdsf

c : s Ax(c:s)

sdsf-start

� `

sdsf

A :� s

�[x:A] `

sdsf

x : A

x fresh

sdsf-weak

� `

sdsf

� : C � `

sdsf

A :� s

�[x:A] `

sdsf

� : C

x fresh

sdsf-pi

� `

sdsf

A :� s

1

�[x:A] `

sdsf

B :� s

2

� `

sdsf

fx:AgB : s

3

Rule(s

1

; s

2

; s

3

)

sdsf-lda

�[x:A] `

sdsf

M : B � `

sdsf

A :� s

� `

sdsf

[x:A]M : fx:AgB

B 62 Sort

T

Rule(s; s

2

; s

3

)

sdsf-app

� `

sdsf

M :

wh

� fx:AgB � `

sdsf

N : A

0

A ' A

0

� `

sdsf

M N : [N=x]B

Table 11: The syntax-directed semi-full type system (SDSFTS)

(2) By induction over the derivation of � `

sf

M : A. We do one case. Assume the deriva-

tion ends with sf-lda

sf-lda

.

.

.

�[x:A] `

sf

M : B

.

.

.

� `

sf

A : s

� `

sf

[x:A]M : fx:AgB

B 62 Sort

T

Rule(s; s

2

; s

3

)

By IH �[x:A] `

sdsf

M : B

0

where B

0

' B, and � `

sdsf

A :� s. In order to conclude

� `

sdsf

[x:A]M : fx:AgB

0

by sdsf-lda it remains to show B

0

62 Sort

T

. If B

0

= t 2 Sort

T

then B � t so t occurs in B. Notice that �[x:A] ` M : B by Lemma 4.3 (2) applied to the left

premiss, hence B = t by Lemma 4.1; but this contradicts the given side condition.

Finally, we could apply the optimization, discussed in Section 1.2, which avoids duplicating

the context validity check. Since this is straightfoward I forego this extra step.

4.4 A Typechecking Algorithm for Semi-Full PTS

SDSFTS of Table 11 is syntax directed. In the case of a normalizing, functional PTS with �nite

Sort we can already view SDSFTS as a type synthesis algorithm in straightfoward generalization

of the PCC example of Section 1.2. (Thus, for LF, we are done.) In general two more problems

arise: in systems with in�nite Sort it may be undecidable if there is an axiom for a given

constant c, or a rule for given s

1

, s

2

; in non-functional systems we won't know which of several

axioms for c to choose, or which of several rules for s

1

, s

2

. These problems are reduced to

a decision problem about the sorts, axioms and rules of the PTS by making these decisions

schematically and collecting the conditions constraining the schematic choices. This subsection

follows [HP91], where more details of a related application of the same ideas can be found. The

same technique can be used to derive algorithms from syntax-directed derivation systems for

other classes of type theory, such as the systems of Jutting.

286

Notation: we write � `

ds

M)� X; C for � `

ds

M) X

0

; C, C consistent, and X

0

� X.

ds-ax � `

ds

c) �; fAx(c:�)g � fresh

ds-start

� `

ds

A)� �; C

�[x:A] `

ds

x) A; C

x fresh

ds-weak

� `

ds

�) X; C � `

ds

A)� �;D

�[x:A] `

ds

�) X; C [D

x fresh

ds-pi

� `

ds

A)� �

1

; C �[x:A] `

ds

B)� �

2

;D

� `

ds

fx:AgB) �

3

; C [D [fRule(�

1

; �

2

; �

3

)g

�

3

fresh

ds-lda

�[x:A] `

ds

M) X; C � `

ds

A)� �;D

� `

ds

[x:A]M) fx:AgB; C [D [fB 62 Sort

T

g [fRule(�; �

2

; �

3

)g

�

2

; �

3

fresh

ds-app

� `

ds

M)

wh

� fx:XgY ; C � `

ds

N) X

0

;D C [D consistent X

E

' X

0

� `

ds

M N) [N=x]Y; C [D [E

Table 12: Derivation schemes for the syntax-directed semi-full type system (SDSFDS)

Recall the discussion of schematic terms in Section 2.3. For our current purposes a constraint

is one of the expressions Ax(c:�), Rule(�

1

; �

2

; �

3

), �

1

= �

2

, or B 62 Sort

T

. We henceforth assume

that the consistency of any set of constraints is decidable (notice that this implies DTP). For

example, if Sort is �nite (as in LF) this is clearly the case; a system such as LF extended with

in�nitely many strati�ed universes also has this property.

4.4.1 Schematic Typing

Table 12 is a system for derivation schemes of the system SDSFTS. The judgements of SDSFDS

have the shape � `

ds

M) X; C. All the constraints that must be satis�ed for an instance of X

to be a correct type of M in � are collected in C.

Lemma 4.5 For a semi-full PTS with consistency of constraint sets decidable, if � `

ds

M) X; C

then X; C is a mgts for �;M .

SDSFDS has an algorithmic interpretation returning failure if �;M has no type, or an mgts for

�;M

References

[Bar91] Henk Barendregt. Introduction to generalised type systems. J. Functional Program-

ming, 1(2):124{154, April 1991.

[Bar92] Henk Barendregt. Lambda calculii with types. In Gabbai Abramsky and Maibaum,

editors, Handbook of Logic in Computer Science, volume II. Oxford University Press,

1992.

[Ber90] Stefano Berardi. Type Dependence and Constructive Mathematics. PhD thesis, Di-

partimento di Informatica, Torino, Italy, 1990.

287

[CH88] Thierry Coquand and G�erard Huet. The calculus of constructions. Information and

Computation, 76(2/3):95{120, February/March 1988.

[Geu90] Herman Geuvers. Type systems for higher order logic. 1990.

[GN91] Herman Geuvers and Mark-Jan Nederhof. A modular proof of strong normalization

for the calculus of constructions. Journal of Functional Programming, 1(2):155{189,

April 1991.

[Hel91] Leen Helmink. Goal directed proof construction in type theory. In Logical Frameworks.

Cambridge University Press, 1991.

[HHP87] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics. In

Proceedings of the Symposium on Logic in Computer Science, pages 194{204, Ithaca,

New York, June 1987.

[HHP92] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics.

Journal of the ACM, 1992. to appear.

[HP91] Robert Harper and Robert Pollack. Type checking with universes. Theoretical Com-

puter Science, 89:107{136, 1991.

[Hue87] G�erard Huet. The constructive engine, March 1987. Invited talk at ESOP'88. Not in

proceedings.

[LP92] Zhaohui Luo and Robert Pollack. LEGO proof development system: User's manual.

Technical Report ECS-LFCS-92-211, LFCS, Computer Science Dept., University of

Edinburgh, The King's Buildings, Edinburgh EH9 3JZ, May 1992. Updated version.

[Luo90] Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, Department of

Computer Science, University of Edinburgh, June 1990.

[Pfe89] Frank Pfenning. Elf: A language for logic de�nition and veri�ed mataprogramming.

In Proceedings of the Fourth Annual Symposium on Logic in Computer Science, Asilo-

mar, California, June 1989.

[vBJ92] L.S. van Bentham Jutting. Typing in pure type systems. Information and Computa-

tion, 1992. To appear.

288

A Relevant Analysis of Natural Deduction

David Pym and Gordon Plotkin, Edinburgh

Abstract

We discuss a �rst-order dependent type theory based on a fragment of intuitionistic

linear logic. We discuss the use of this type theory as a framework for the analysis of

natural deduction presentations of weak logics.

289

Fixed point and type systems

Christophe Ra�alli, Paris 7

Abstract

We study an extension of AF2 type system (system F + �rst order + equations). This

extension adds two new quanti�ers on formulas: least �xpoint (inductive types) and greatest

�xpoint (co-inductive types). We denote them respectively by mu and nu.

In this system we prove the following results :

1. We have found conditions on types and proofs which ensure that all typed terms are

hereditarily solvable (their Bohm-tree don't contain any bottom). The surprising fact

is that the condition is stronger with least �xpoint (inductive types) than for the

system with only greatest �xpoint.

The condition for the system with only greatest �xpoint is that there is nowhere in

the proof a subformula \nu X.F" where X is strictly positive in F (in particular no

\nu X.X" in the proof). Concerning the least �xpoint, the condition concern all sub-

formulas in the proof and have the same complexity than decision of propositional

classical logic.

2. We have also found in this system, a representation for inductive and co-inductive

data. This types are such that each data has a unique normal representation (in fact

a unique Bohm-tree). For instance, this allows a construction of the data-type of

streams, ensuring unicity of the representation of each stream.

3. We can build a non-standard representation for natural numbers using the greatest

�xpoint, with which one can encode all partial recursive functions.

290

An Overview of the MIZAR Project

Piotr Rudnicki

�

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada T6G 2H1

e-mail: piotr@cs.ualberta.ca

June 30, 1992

Abstract

TheMizar project is a long-term e�ort aimed at developing software to support a work-

ing mathematician in preparing papers. A. Trybulec, the leader of the project, has designed

a language for writing formal mathematics. The logical structure of the language is based

on a natural deduction system developed by Ja�skowski. The texts written in the language

are called Mizar articles and are organized into a data base. The Tarski-Grothendieck set

theory forms the basis of doing mathematics in Mizar. The implemented processor of the

language checks the articles for logical consistency and correctness of references to other

articles.

1 Introduction

The idea that an automatic device should check our logical derivations is by no means new.

It can be traced back not only to Pascal and Leibniz, but to Ramon Llull. In recent years,

several projects have aimed at providing computer assistance for doing mathematics. Among

the better known there are: AUTOMATH [4], EKL [10], QUIP [22], Nuprl [3], THEAX [14],

Computational Logic [2], Ontic [11], and the more recent ones such as ALF, ELF, HOL, LEGO

and many others (see [6, 7]). The speci�c goals of these projects vary. However, they have

one common feature: the human writes mathematical texts and the machine veri�es their

correctness.

The project Mizar started almost 20 years ago under the leadership of Andrzej Trybulec at

the P lock Scienti�c Society, Poland. Its original goal was to design and implement a software

environment to assist the process of preparing mathematical papers. For lack of a better alter-

native, the project was based upon the style of doing mathematics used by the mathematicians

of the so-called Polish mathematical school. Therefore, the project can be seen as an attempt

to develop software environment for writing traditional mathematical papers, where classical

logic and set theory form the basis of all future developments.

The logical basis of the system is a \Polish" style of natural deduction. Only after years of

using the logic has it been learned that it was the \composite system of logic" developed by

Stanis law Ja�skowski, see [8] and [12] for the English translation. Katuzi Ono, [16] described a

�

This work was supported in part by NSERC Grant OGP9207.

291

similar system. Various formalizations of set theory have been tried (Zermelo-Fraenkel, Morse-

Kelley) but �nally the Tarski-Grothendieck axiomatization has been adopted.

2 A bit of history

The name Mizar

1

was picked up in 1973 for a di�erent project (a programming environment)

that was discontinued, but its name has been recycled.

The �rst experiments in 1974-75 developed a modest proof-checker for propositional logic.

The main concern of A. Trybulec was the input language to the checker, and it turned out to

be the main concern for all future years. The proof checker was based on a �xed set of inference

rules. The justi�cation of an inference in the input text required the user to state only the

premises and the conclusion; the checker searched for a rule or a sequence of rules to validate

an inference step. This approach was abandoned, and all future Mizar processors have used

model checking.

In 1977 the language and the checker were extended with quanti�ers to form Mizar QC

which had neither functional notation nor de�nitional facilities. These were added in subsequent

years to form the Mizar FC system, which was used to record a number of larger texts. Among

these texts was the initial segment of the book on arithmetics by Grzegorczyk [5]. The book is

so rigorous and detailed (the Chinese remainder theorem comes as late as page 67 and its proof

takes 6 pages) that the blow-up factor in the translation to Mizar FC was negligible.

At around 1978-1979 the Mizar group started to grow substantially, being anchored at

Warsaw University, Bia lystok

2

Branch

3

.

In 1981, a language called Mizar 2 had been designed by A. Trybulec and implemented

on an ICL 1900 by Cz. Byli�nski, H. Oryszczyszyn, P. Rudnicki, and A. Trybulec. The system

was written in Pascal and later ported to other computers (mainframe IBM and also to UNIX).

Again, the stress was on the input language. The proof checker was rather weak which forced

one to write very detailed proofs. The language included the following features: structured

types, type hierarchy, comprehensive de�nitional facilities, built-in fragments of arithmetics,

and a built-in variant of set theory. The translations into Mizar 2 included: a number of

recent papers in topology, projective geometry, and some text-book algebra. In one of the

experiments, the pigeon-hole principle was proven from scratch and compared with the similar

development by van Benthem Jutting [28] in AUT-QE (the AUTOMATH project). The Mizar

2 text was about half as long as the AUT-QE text; however, Mizar 2 and AUT-QE were

substantially di�erent environments for conducting proofs (logic based vs type based). Among

other works withMizar 2, there were attempts to prove properties of programs [21] and software

speci�cations [20].

In the following years, other Mizar languages and their implementations have been de-

veloped but their character was experimental (Mizar 3, Mizar HPF); the systems were not

distributed outside the Mizar group in Bia lystok, with one exception.

1

Mizar, � Ursae Majoris, is the second magnitude star set in the middle of the Big Dipper's handle; Mizar

(Arabic: veil, cloak, burial grounds) makes a visual binary with the fainter Alcor (Arabic: faint one); each of the

visual components is a spectroscopic binary; Mizar is a quadruple star.

Incidentally, Algol (Arabic: daemon, ghoul), � Persei, is an eclipsing visual binary star, spectroscopically a

triple, probably a quadruple star as well.

2

E. Post was born in August�ow, near Bia lystok. A. Lindenbaum was last seen in Bia lystok in 1941.

3

Address: Mizar Group, Institute of Mathematics, Warsaw University|Bia lystok Branch, 15-276 Bia lystok,

Poland.

292

A subset of Mizar, named Mizar MSE (short for Multi-Sorted with Equality) was imple-

mented in 1982 by R. Matuszewski, P. Rudnicki, and A. Trybulec and has been widely used since

then. The system is meant for teaching elementary logic with emphasis on the practical aspects

of constructing proofs. The Mizar MSE language encompasses `raw' predicate calculus, multi-

sorted with equality, but the language does not provide functional notation or special notation

for de�nitions. There are numerous implementations of Mizar MSE, see [26, 25, 13, 19, 18, 15].

In 1986, Mizar 4 was implemented as a redesign of Mizar 2 and distributed to several

dozen users. Each Mizar 4 article included a preliminaries part where the author could state

some axioms that were not checked for validity.

In 1988 the design of the language was completed by A. Trybulec and the �nal language is

named simplyMizar. While articles in previous versions of the language must be self-contained,

the �nal Mizar allows for cross-references among articles. Moreover, an author of a Mizar text

is not allowed to introduce new axioms. Only the prede�ned axioms can be used, everything

else must be proved. The two articles that are not checked for validity contain an axiomatics

of the Tarski-Grothendieck set theory (see Appendix A) and de�nitional axioms of the built-in

concepts and axioms of strong arithmetics of real numbers (see Appendix B).

Recently, the main e�ort in the Mizar project has been in building the library of Mizar

articles which now numbers almost 300.

The development of Mizar has been driven by \experience, not only doctrine (ENOD for

short)"

4

. In this case it meant that any idea that made sense was �rst of all implemented and

tried by its proponent. However, only after other users approved the idea by actually using its

implementation, was the idea included into the state of the project. The ENOD approach has

been applied in the development of the Mizar processor, the input language (although it is

almost exclusively of A. Trybulec's creation), and the Mizar library.

Before giving more information about Mizar it may be worthwhile to recall here the For-

mulaire de math�ematiques project of Giuseppe Peano (quoted from Kennedy [9] p. 8):

The end result of this project would be, he hoped, the publication of a collection

of all known theorems in the various branches of mathematics. The notions of his

mathematical logic were to be used and proofs of the theorems were to be given.

There were �ve editions of the Formulario: the �rst appeared in 1895, and the last,

completed in 1908, contained some 4200 theorems.

The project was based on a formal language. In the introduction to the second volume of

Formulaire de math�ematiques, Peano writes (quoted from [17], p. 197, vol. II):

Dans le petit livre �Arithmetices principia, nova methodo exposita, a. 1889�,

nous avons pour la premi�ere fois expos�e toute une th�eorie, th�eor�emes, d�e�nitions et

d�emonstrations, en symboles qui remplacent tout-�a-fait le langage ordinaire.

Nous avons donc la solution du probl�eme propos�e par Leibniz.

3 Anatomy of a Mizar article

Each Mizar article is written as a text �le. The general structure of such an article is as follows:

4

The expression has been coined by G. Kreisel, see his contribution in Logic and Computer Science, P. Odifreddi

(ed.), Academic Press, pp. 205{278.

293

environ

Environment directives

begin

Text-Proper Section

. . .

. . .

begin

Text-Proper Section

The Text-Proper contains statements of facts with their proofs and de�nitions of new con-

cepts with justi�cation of their correctness. The Environment directives declare which items of

the Mizar library can be referenced from the Text-Proper . The directive

vocabulary Vocabulary-File-Name;

adds the symbols introduced in the Vocabulary-File-Name to the article's lexicon. Vocabulary

�les introduce new symbols of Mizar expression constructors. The vocabularies also indicate

the binding strength of the introduced symbols for parsing purposes. The authors can use exist-

ing vocabularies (there are hundreds of symbols there) and also are free to create new ones. The

lexical make-up of new symbols is governed by a small set of quite liberal rules. The authors

can freely enhance the zoo of mathematical symbols with new symbols of their own design.

One vocabulary is automatically attached to every Mizar article. It introduces the following

symbols: Element, Subset, DOMAIN, Real, Nat, +, <>, �, 2, and the like. The information

pertaining to the usage of these symbols is built into the Mizar processor, e.g. 2 can be used

as a binary, in�x predicate symbol with both arguments expandable to type set. Similarly, �

requires two arguments of type expandable to Element of Real.

Besides vocabularies, there are four kinds of data base directives:

signature Signature-File-Name;

definitions De�nitions-File-Name;

theorems Theorems-File-Name;

schemes Schemes-File-Name;

The directive signature informs the Mizar processor that the article is permitted to use

the notation (de�nienda) introduced in article Signature-File-Name.

Any article can de�ne ways in which the symbols contained in vocabularies can be used

to form Mizar expressions. Each of the Mizar expression constructors (functor, predicate,

mode) can be syntactically de�ned in a number of formats. These constructors may take various

numbers of arguments of various types, and in the case of functors they may return results of

various types. This creates a complicated system of overloaded constructors. The information

needed for parsing is kept in auxiliary �les associated with every article and commonly referred

to as the signature of the article.

The remaining three directives allow us to use de�nitions, theorems, and schemes that are

de�ned or proved in another article.

The Text-Proper is a sequence of sections, each being a sequence of Text-Item. There are

the the following kinds of items:

294

� Reservation is used to reserve identi�ers for a type. If a variable has an identi�er reserved

for a type, and no explicit type is stated for the variable, then the variable type defaults

to the type for which its identi�er was reserved.

� De�nition-Block is used to de�ne (or rede�ne) constructors of Mizar phrases: term con-

structors (functions), formula constructors (predicates), and type constructors (modes).

� Structure-De�nition introduces new structures. A structure is an entity that consists of

a number of �elds that are accessed by selectors.

� Theorem announces a proposition that can be referenced from other articles.

� Scheme also announces a proposition, visible from outside. Second order terms can occur

in scheme.

� Auxiliary-Item introduces objects that are local to the article in which they occur and are

not exported to the library �les (e.g. lemmas, de�nitions of local predicates).

The goal of writing an article is to prove some theorems and schemes or to de�ne some new

concepts such that they can be referenced by other authors. Before the theorems and de�nitions

are included into the library they must be proved valid and correct.

4 The PC Mizar

PC Mizar is a Mizar processor implemented on IBM PCs under DOS by Cz. Byli�nski, A.

Trybulec, and S.

_

Zukowski, and now further developed by the �rst two authors.

The central concept of Mizar is a Mizar article. Such an article can be viewed as an

extremely detailed mathematical text written in a �xed formal notation, originally as a text

�le. There are rather few interesting things that one can prove in a short Mizar article without

making references to other articles. Usually, we base our work on the achievements of others.

The power of the Mizar system is in its automatic processing of cross-references among

articles contained in the Mizar library. In order to speed up the process of cross reference

checking, some internal �les, derived from the submitted articles, are maintained. These �les

(they are not meant to be read by humans) are created in the process of including an article

into the Mizar library.

� signature �les that for each newly de�ned constructor of Mizar phrases in the article give

information necessary for parsing the constructor occurrences.

� de�nitions �le stores the de�niens of every de�nition in the article, the de�niendum is

stored in the signature �le.

� theorems �le stores the theorems proved in the article (without proofs).

� schemes �le stores the schemes proved in the article (without proofs).

The Mizar software is a collection of about 50 programs that process Mizar articles.

� The veri�er must run in the appropriate environment with access to all the vocabulary

and library �les referenced in the given article. For e�ciency reasons, each checked article

obtains a dedicated environment (by a program called accommodator) in order to avoid

too many references to di�erent library �les.

295

� Parsing of Mizar texts is relatively complicated mainly because of the rich Mizar syntax,

multi-way overloading of names, and new de�nitions or rede�nitions of Mizar phrase

constructors and their priorities.

� Checking whether proofs are correctly structured requires some processing as Mizar

permits a multitude of proof structures in the spirit of natural deduction proposed by

Ja�skowski.

� An inference of the form

premise

0

; premise

1

; : : : ; premise

k

` conclusion

is transformed into the conjunction

premise

0

& premise

1

& : : : & premise

k

& not conclusion:

If the checker �nds the conjunction contradictory then the original inference is accepted.

Unfortunately but inevitably, the checker sometimes does not accept an inference that

is logically correct; to get the inference accepted one has to split it into a sequence of

`smaller' ones, or possibly use a proof structure. The stress in the inference checker is on

the processing speed, not power.

5 The Input Language

Experience has shown that people with even minimal mathematical training develop a good

idea about the nature of the Mizar language just by browsing through a sample article. This

is not a big surprise as one of the original goals of the project was to build an environment that

mimics the traditional ways that mathematicians work. A sample Mizar article is presented

in Appendix C.

Because of the richness of the Mizar grammar, even a sketchy presentation of it is far

beyond the scope of this text.

6 Mizar abstracts

The source texts of Mizar articles tend to be lengthy as they contain complete proofs in a rather

demanding formalism. New articles strongly depend on already existing ones. Therefore, there

was a need to provide authors with a quick reference to the already collected articles. The

solution was to automatically create an abstract for each Mizar article. Such an abstract

includes a presentation of all the items that can be referenced from other articles. The abstract

of the article presented in Appendix C is contained in Appendix D. Therefore, there is no need

to examine the entire article to make a reference to a single theorem.

To make the abstracts resemble a mathematical paper at least at the lexical level, they

are automatically typeset using T

E

X. The T

E

Xed Mizar abstract from Appendix D is in Ap-

pendix E.

The typeset Mizar abstracts are periodically published

5

by Universit�e Catholique de Lou-

vain as Formalized Mathematics (a computer assisted approach) with R. Matuszewski as editor.

5

For more information write to: Fondation Philippe le Hodey, Mizar Users Group, Av. F. Roosevelt 134

(Bte7), 1050 Brussels, Belgium, fax +32 (2) 640 89 68

296

7 Main Mizar Library

At the beginning of 1989, the Mizar group in Bia lystok started collecting Mizar articles and

organizing them into a library that is distributed to other Mizar users.

The person responsible for the library (E. Woronowicz) requires that authors of contributed

articles supply an additional �le that describes the bibliographic data such as title, authors'

names and a�liations, and a summary (in English). The bibliographic information is included

at the beginning of each typeset abstract.

As of June 19, 1992, the library consisted of 279 Mizar articles authored by some 60 people.

214 theorem �les that are referenced from other articles contained 5810 theorems; there were

109903 cross-references among articles. Totally there were about 15 MB of source text �les with

articles. Although the majority of articles have been authored by people from Bia lystok, many

papers have been written by mathematicians from other universities in Poland, and there are

articles written by foreign authors (Canada, Japan, Spain, USA).

The nature of the articles varies. Most of them are Mizar translations of basic mathematics.

Few of them contain new results. To get an idea about the contents of the library, look at

Table 13 for a sample of article titles.

No. Name Inclusion date Title Author(s)

1 BOOLE 6.I.1989 Boolean Properties of Sets Z. Trybulec and

H.

�

Swie

`

czkowska

17 FUNCT 2 6.IV.1989 Functions from a Set to

a Set

Cz. Byli�nski

33 WELLORD2 26.IV.1989 Zermelo Theorem and

Axiom of Choice

G. Bancerek

67 FRAENKEL 7.II.1990 Function Domains and

Fraenkel Operator

A. Trybulec

106 TRANSLAC 12.VI.1990 Translations in A�ne

Planes

H. Oryszczyszyn and

K. Pra_zmowski

185 MEASURE1 15.X.1990 The �-additive Measure

Theory

J. Bia las

231 ALI2 17.VII.1991 Fix Point Theorem for

Compact Spaces

A. de la Cruz

248 HEINE 21.XI.1991 Heine-Borel's Covering

Theorem

A. Darmochwa l and

Y. Nakamura

274 MIDSP 3 28.V.1992 Reper Algebras M. Muzalewski

Table 13: Sample of titles from Mizar library.

The development of the Mizar library may be perceived as an experiment in the sociology of

mathematics. The acceptance criteria are very liberal: every submitted paper that is accepted

by the Mizar processor is included into the library. There are some e�orts towards having

automated reviewers (that looks, for example, for repeated theorems or trivial ones). There is

a collection of programs called enhancers and improvers that try to automatically meliorate the

submitted articles. The melioration makes changes in the submitted articles, that is, replaces

a proof by a one step inference referencing a number of propositions, or replaces a sequence

297

of inferences by a single one, or removes references to the super
uous premises in an inference

step.

As the Mizar system evolves, and this includes the input language, there is a need to rewrite

pieces of the library articles to mirror the changes. To a large extent, this is done automatically.

Sometimes, however, a manual intervention is required.

The people maintaining the library collect statistics about the references across articles.

Consideration is given to whether or not the frequently quoted theorems or de�nition should

be built into the Mizar veri�er. This was the fate of proposition TARSKI:1 which stated that

everything was a set, see Appendix A.

Table 14 contains the list of the 10 most frequently quoted theorems.

No. of % of all Name Statement of the theorem

ref. ref.

2347 2.1355% BOOLE:11 x 2 X & X � Y implies x 2 Y

1642 1.4940% BOOLE:9 x 2 X\Y i� x 2 X & x 2 Y

1558 1.4176% TARSKI:3 X = fyg i� for x holds x 2 X i� x = y

1349 1.2274% BOOLE:8 x 2 X[Y i� x 2 X or x 2 Y

1252 1.1392% BOOLE:def 1 Z = ; i� not ex x st x 2 Z

1242 1.1301% BOOLE:29 X � Y & Y � Z implies X � Z

964 0.8771% FINSEQ 1:13 k = len p i� Seg k = dom p

922 0.8389% BOOLE:64 (X[Y)[Z = X[(Y[Z)

848 0.7716% BOOLE:5 X � Y i� for x holds x 2 X implies x 2 Y

792 0.7206% AXIOMS:2 X is Subset of Y i� X � Y

Table 14: Top 10 theorems of Mizar library.

8 The future

The Mizar language: The logical level of the language has long been �xed. It is the type

hierarchy that fuels all the changes. Recently, the development has focused on introducing a

mechanism for deriving Mizar structures in the spirit of the object-oriented approach, and on

deriving new Mizar modes by adding attributes to existing ones. Both proposed derivation

techniques result in Boolean algebras of structures and sets of attributes, respectively. According

to A. Trybulec both these changes will have a dramatic impact on the style of doing mathematics

in Mizar.

The language still lacks some polymorphic or generic facilities such that one has to prove

analogous facts twice, for example, about lower and upper semilattices.

Translations: It is planned to implement the mechanical translation of Mizar texts into other

existing systems for doing mathematics, and vice versa. However, H. Barendregt's optimism on

the time frame required for such a work is not commonly shared.

Large data base: A large data base would require a major e�ort from numerous parties and

the administrative problems of such an enterprise should not be neglected. It is estimated that

298

maintenance of a data base 10 times bigger than the current state (i.e. with about 3000 articles

by several hundred authors) could stabilize a number of issues whose current solutions tend to

be unstable.

Presentation: The usefulness of Formalized Mathematics containing typeset abstracts insti-

gated some thoughts on typesetting entire Mizar articles. Similarly, a need arises to develop

some automated techniques for extracting topical monographs from the Mizar library.

Accommodator: The process of preparing a local environment for checking a single article

awaits a better solution. The problem here is similar to linking a newly written program with

library modules, known to be a challenge in software engineering. An accommodator is expected

to speed up the process of checking articles by cutting o� the complex data base interaction at

a certain level.

Neglected issues: There are some aspects of the Mizar system that draw immediate crit-

icism. To name a few: restriction to IBM PC and compatibles; poor user interface restricted

to the text editor level; only textual searches of the data base; weak inference checker. All of

them have been recognized as problems to work on but were perceived as second priority issues.

Eventually, they have to be addressed.

Hibernation: Freezing the changes in the input language and in the Mizar processor has

been a goal for quite a while, yet it seems to move away like the horizon when you try to

approach it.

9 How to learn Mizar?

The Mizar language, its processor, and the organization of the Mizar library evolve, and

therefore there is not much in the way of written documentation, see [1].

In the face of documentation shortages the best way to learn Mizar is to spend approxi-

mately four weeks in Bia lstok

6

and co-author a Mizar article with a native user of the system.

However, numerous cases are known of Mizar users who that advanced their knowledge of the

system by studying the existing texts (and there are 15MB of these).

Acknowledgements

I am indebted to all members of the Mizar development group (which I was a member of

years ago) and to all the authors of articles in Mizar Library. Special thanks are to Andrzej

Trybulec, Roman Matuszewski, Czes law Byli�nski, Edmund Woronowicz, Grzegorz Bancerek,

and Zbigniew Karno.

This \commercial" has been written with the hope that their work meets with the recognition

it deserves.

6

Other places include: L�od�z and Rzesz�ow in Poland, Madrid in Spain, and Nagano in Japan.

299

References

[1] Ewa Bonarska. An Introduction to PC Mizar. Mizar Users Group. Fondation Philippe le

Hodey, Brussels, 1990.

[2] R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic Press, 1988.

[3] R.L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System.

Prentice-Hall, 1986.

[4] N. G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and Hindley J. R.,

editors, Essays in Combinatory Logic, Lambda Calculus, and Formalism, pages 589{606.

Academic Press, 1980.

[5] Andrzej Grzegorczyk. Zarys arytmetyki teoretycznej. PWN Warszawa, 1971.

[6] G. Huet and G. Plotkin, editors. Proceedings of the 1st Workshop on Logical Frameworks.

ESPRIT BRA 3245, 1990. Anonymous ftp: nuri.inria.fr.

[7] G. Huet and G. Plotkin, editors. Proceedings of the 2nd Workshop on Logical Frameworks.

ESPRIT BRA 3245, 1991. Anonymous ftp: colonsay.dcs.ed.ac.uk.

[8] S. Ja�skowski. On the rules of supposition in formal logic. Studia Logica, 1, 1934.

[9] H. C. Kennedy, editor. Selected works of Giuseppe Peano. University of Toronto Press,

1973.

[10] J. Ketonen. EKL|a mathematically oriented proof checker. In Proceedings of 7th Int.

Conf. on Automated Deduction, pages 65{79, Napa, CA, May 1984.

[11] D. A. McAllester. Ontic. The MIT Press, 1989.

[12] S. McCall, editor. Polish Logic in 1920{1939. Clarendon Press, Oxford, 1967.

[13] M. Mostowski and Z. Trybulec. A certain experimental computer aided course of logic in

Poland. In Proceedings of World Conference on Computers in Education, Norfolk, VA,

1985.

[14] Y. Nakamura. A language for description of mathematics|THEAX. Technical report,

Shinshu University FIE, Nagano City, Japan, 1985. In Japanese.

[15] S. Nieva Soto. The Reasoner of MIZAR/LOG. Computerized Logic Teaching Bulletin,

2(1):22{35, March 1989.

[16] K. Ono. On a practical way of describing formal deductions. Nagoya Mathematical Journal,

21, 1962.

[17] Giuseppe Peano. Opere Scelte. Edizioni Cremonese, Roma, 1958.

[18] K. Pra_zmowski, P. Rudnicki, et al. Mizar-MSE Primer and User Guide. TR 88-9, The

University of Alberta, Department of Computing Science, Edmonton, 1988.

[19] P. Rudnicki. Obvious inferences. Journal of Automated reasoning, 3:383{393, 1987.

300

[20] P. Rudnicki. What should be proved and tested symbolically in formal speci�cations? In

4th IEEE International Workshop on Software Speci�cation and Design, pages 190{195,

Monterey, Ca., 1987.

[21] P. Rudnicki and W. Drabent. Proving properties of Pascal programs in MIZAR 2. Acta

Informatica, 22:311{331, 1985. Erratum pp. 699{707.

[22] R.L. Smith et al. Computer-assisted axiomatic mathematics: Informal rigor. In O. Lecarme

and R. Lewis, editors, Computers in Education, pages 803{809. North Holland, 1975.

[23] Alfred Tarski.

�

Uber unerreichbare Kardinalzahlen. Fundamenta Mathematicae, 30:68{89,

1938.

[24] Alfred Tarski. On well-ordered subsets of any set. Fundamenta Mathematicae, 32:176{183,

1939.

[25] A. Trybulec and H. Blair. Computer aided reasoning. In R. Parikh, editor, Logic of

Programs, LNCS 193. Springer Verlag, 1985.

[26] A. Trybulec and H. Blair. Computer assisted reasoning with Mizar. In Proceedings of the

9th IJCAI, pages 26{28, Los Angeles, Ca., 1985.

[27] Andrzej Trybulec. Tarski Grothendieck Set Theory. Formalized Mathematics, 1:9{11, 1990.

[28] L. S. van Benthem Jutting. The development of a text in AUT-QE. In Proceedings

of APLASM'73, Symposium d'Orsay sur la Manipulation des Symboles at d'Utilisation

d'APL, Universite Paris XI, 1973.

301

A Tarski Grothendieck Set Theory

The following is the abstract and the actual article on which the Mizar library is built. For

obvious reasons the article has not been checked for validity. Unfortunately for the international

audience the comments in text are mainly in Polish. First, the English summary provided by

A. Trybulec (author).

This is the �rst part of the axiomatics of the Mizar system. It includes the axioms

of the Tarski Grothendieck set theory. They are: the axiom stating that everything

is a set, the extensionality axiom, the de�nitional axiom of the singleton, the def-

initional axiom of the pair, the de�nitional axiom of the union of a family of sets,

the de�nitional axiom of the boolean (the power set) of a set, the regularity axiom,

the de�nitional axiom of the ordered pair, the Tarski's axiom A introduced in [23]

(see also [24]), and the Fr�nkel scheme. Also, the de�nition of equinumerosity is

introduced.

environ vocabulary EQUI REL, BOOLE, FAM OP;

:: Andrzej Trybulec

:: Teoria mnogosci Tarskiego Grothendiecka

begin

reserve x,y,z,u for Any,

N,M, X,Y,Z for set;

:: axiom Tarski:1 ---- wszystko jest zbiorem

canceled; :: as obvious: x is set;

axiom :: Tarski:2 ---- ekstensjonalnosc zbiorow

(for x holds x 2 X iff x 2 Y) implies X = Y;

:: Singletony i pary

definition

let y; func f y g -> set means

:: TARSKI: def 1

x 2 it iff x = y;

let z; func f y, z g -> set means

:: TARSKI: def 2

x 2 it iff x = y or x = z;

end;

axiom :: Tarski:3 ---- definicja singletonu

X = f y g iff for x holds x 2 X iff x = y;

axiom :: Tarski:4 ---- definicja pary nieuporzadkowanej

X = f y,z g iff for x holds x 2 X iff x = y or x = z;

definition let X,Y;

pred X c= Y means

:: TARSKI: def 3

x 2 X implies x 2 Y;

reflexivity;

end;

definition let X;

func union X -> set means

:: TARSKI: def 4

x 2 it iff ex Y st x 2 Y & Y 2 X;

end;

axiom :: Tarski:5 ---- definicja unii rodziny zbiorow

X = union Y iff for x holds x 2 X iff ex Z st x 2 Z & Z 2 Y;

axiom :: Tarski:6 ---- definicja zbioru potegowego

X = bool Y iff for Z holds Z 2 X iff Z c= Y;

302

axiom :: Tarski:7 ---- aksjomat regularnosci

x 2 X implies ex Y st Y 2 X & not ex x st x 2 X & x 2 Y;

scheme Fraenkel f A()-> set, P[Any, Any] g:

ex X st for x holds x 2 X iff ex y st y 2 A() & P[y,x]

provided for x,y,z st P[x,y] & P[x,z] holds y = z;

definition let x,y;

func [x,y] means

:: TARSKI: def 5

it = f f x,y g, f x g g;

end;

axiom :: Tarski:8 ---- definicja pary uporzadkowanej

[x,y] = f f x,y g, f x g g;

definition let X,Y;

pred X � Y means

:: TARSKI: def 6

ex Z st

(for x st x 2 X ex y st y 2 Y & [x,y] 2 Z) &

(for y st y 2 Y ex x st x 2 X & [x,y] 2 Z) &

for x,y,z,u st [x,y] 2 Z & [z,u] 2 Z holds x = z iff y = u;

end;

:: Alfred Tarski

:: Ueber unerreichbare Kardinalzahlen,

:: Fundamenta Mathematicae, vol.30 (1938), pp.68-69

:: Axiom A. (Axiom der unerreichbaren Mengen). Zu jeder Menge N gibt es

:: eine Menge M mit folgenden Eigenschaften :

:: A1. N 2 M;

:: A2. ist X 2 M und Y c= X, so ist Y 2 M;

:: A3. ist X 2 M und ist Z die Menge, die alle Mengen Y c= X und keine

:: andere Dinge als Element enthaelt, so,ist z 2 M;

:: A4. ist X c= M und sind dabei die Menge X und M nicht gleichmaechtig,

:: so ist X 2 M.

:: takze

:: Alfred Tarski

:: On Well-ordered Subsets of any Set,

:: Fundamenta Mathematicae, vol.32 (1939), pp.176-183

:: A. For every set N there exists a system M of sets which satisfies

:: the following conditions :

:: (i) N 2 M

:: (ii) if X 2 M and Y c= X, then Y 2 M

:: (iii) if X 2 M and Z is the system of all subsets of X, then Z 2 M

:: (iv) if X c= M and X and M do not have the same potency, then X 2 M.

axiom :: Tarski:9

ex M st N 2 M &

(for X,Y holds X 2 M & Y c= X implies Y 2 M) &

(for X holds X 2 M implies bool X 2 M) &

(for X holds X c= M implies X � M or X 2 M);

303

B Built-in Concepts

The English summary provided by A. Trybulec (author):

This abstract contains the second part of the axiomatics of the Mizar system (the

�rst part is in abstract [27]). The axioms listed here characterize the Mizar built-in

concepts that are automatically attached to every Mizar article. We give de�nitional

axioms of the following concepts: element, subset, Cartesian product, domain (non-

empty subset), subdomain (non empty-subset of a domain), set domain (domain

consisting of sets). Axioms of strong arithmetics of real numbers are also included.

Numerous axioms that were needed some time ago have been cancelled; they have been built

into the processor and they are now obvious to the veri�er. The trace of them is required to

properly process older articles that made references to the axioms.

Polish comments have been deleted from the text.

:: Andrzej Trybulec

environ

vocabulary Boole; signature Tarski;

begin

reserve x,y,z for Any,

X,X1,X2,X3,X4,Y for set;

:: axiom AXIOMS:1 (ex x st x 2 X) implies (x is Element of X iff x 2 X);

canceled; :: as obvious

axiom :: AXIOMS:2

X is Subset of Y iff X c= Y;

axiom :: AXIOMS:3

z 2 [:X,Y:] iff ex x,y st x 2 X & y 2 Y & z = [x,y];

axiom :: AXIOMS:4

X is non-empty implies ex x st x 2 X;

axiom :: AXIOMS:5

[: X1,X2,X3 :] = [:[:X1,X2:],X3:];

axiom :: AXIOMS:6

[: X1,X2,X3,X4 :] = [:[:X1,X2,X3:],X4:];

reserve D1,D2,D3,D4 for non-empty set;

:: axiom AXIOMS:7 for X being Element of [: D1,D2 :] holds X is TUPLE of D1, D2;

canceled; :: as obvious

:: axiom AXIOMS:8 for X being Element of [: D1,D2,D3 :] holds X is TUPLE of D1, D2, D3;

canceled; :: as obvious

:: axiom AXIOMS:9 for X being Element of [: D1,D2,D3,D4 :] holds X is TUPLE of D1, D2, D3, D4;

canceled; :: as obvious

reserve D for non-empty set;

axiom :: AXIOMS:10

D1 is non-empty Subset of D2 iff D1 c= D2;

:: axiom AXIOMS:11 D is SET DOMAIN;

canceled; :: as obvious

reserve x,y,z for Element of REAL;

axiom :: AXIOMS:12

x + y = y + x;

axiom :: AXIOMS:13

x + (y + z) = (x + y) + z;

axiom :: AXIOMS:14

x + 0 = x;

axiom :: AXIOMS:15

304

x � y = y � x;

axiom :: AXIOMS:16

x � (y � z) = (x � y) � z;

axiom :: AXIOMS:17

x � 1 = x;

axiom :: AXIOMS:18

x � (y + z) = x � y + x � z;

axiom :: AXIOMS:19

ex y st x + y = 0;

axiom :: AXIOMS:20

x <> 0 implies ex y st x � y = 1;

axiom :: AXIOMS:21

x � y & y � x implies x = y;

axiom :: AXIOMS:22

x � y & y � z implies x � z;

axiom :: AXIOMS:23

x � y or y � x;

axiom :: AXIOMS:24

x � y implies x + z � y + z;

axiom :: AXIOMS:25

x � y & 0 � z implies x � z � y � z;

axiom :: AXIOMS:26

for X,Y being Subset of REAL st

(ex x st x 2 X) & (ex x st x 2 Y) &

for x,y st x 2 X & y 2 Y holds x � y

ex z st

for x,y st x 2 X & y 2 Y holds x � z & z � y;

:: axiom AXIOMS:27 x is Real;

canceled; :: as obvious

axiom :: AXIOMS:28

x 2 NAT implies x + 1 2 NAT;

axiom :: AXIOMS:29

for A being set of Real

st 0 2 A & for x st x 2 A holds x + 1 2 A holds NAT c= A;

reserve i,j,k for Nat;

axiom :: AXIOMS:30

k = f i: i<k g;

305

C A Mizar article

The following is the text of an article from the Main Mizar Library. This article is unusual|it is

shortest in the library. In order to decrease the number of text lines and with hope of improving

readability I have manipulated the white space of the original submission. The characters of

extended ASCII have been replaced by some symbols available in L

a

T

E

X. The Mizar processor

restricts the length of input lines to 80 characters. The text below violates this restriction for

presentation purposes.

:: Alicia de la Cruz

:: Fix Point Theorem for Compact Spaces

environ

vocabulary METRYKA, SFAMILY, POWER1, FINITE, SEQ1, SEQ2, SEQM, SUB OP, REAL 1,

TOPCON, PCOMPS, FUNC, TOP2, FAM OP, BOOLE, FINITER2, ALI2, FUNC REL;

signature FINSET 1, METRIC 1, FUNCT 1, FUNCT 2, PRE TOPC, POWER, BOOLE, FUNCOP 1,

TARSKI, COMPTS 1, PCOMPS 1, SETFAM 1, TOPS 1, TOPS 2, SEQ 1, SEQ 2, SEQM 3,

SUBSET 1, REAL 1, NAT 1;

definitions COMPTS 1, TARSKI, TOPS 2, FUNCT 2;

theorems METRIC 1, SUBSET 1, REAL 1, PCOMPS 1, REAL 2, COMPTS 1, POWER, BOOLE, SEQ 2,

SEQ 4, SERIES 1, SEQM 3, AXIOMS, SETFAM 1, TARSKI, SEQ 1, PRE TOPC, TOPS 1,

SQUARE 1, DOMAIN 1, FUNCOP 1, ZFMISC 1;

schemes SETFAM 1, SEQ 1, GROUP 4, FINSET 1, NAT 1;

begin

reserve M for MetrSpace, x, y for Element of the carrier of M;

theorem VIT:

for F being set st F is finite & F <> ; &

for B, C being set st B 2 F & C 2 F holds B c= C or C c= B

ex m being set st m 2 F & for C being set st C 2 F holds m c= C

proof pred P[set] means

$1 <> ; implies ex m being set st m 2 $1 & for C being set st C 2 $1 holds m c= C;

let F be set such that

Z: F is finite and Y: F <> ; and

X: for B, C being set st B 2 F & C 2 F holds B c= C or C c= B;

A: P[;];

B: now let x, B be set such that j0: x 2 F & B c= F & P[B];

now per cases; :: we have to prove P[B Ufxg]

case j: not ex y being set st y 2 B & y c=x;

assume B U fxg <> ;; take m = x; x 2 fxg by TARSKI:def 1;

hence m 2 B U fxg by BOOLE:8; let C be set; assume C 2 B U fxg; then

1 : C2B or C2fxg by BOOLE:8; then j1:C2B or C=x by TARSKI:def 1;

j2: not C c=x or C=x by j, TARSKI:def 1, 1 ; C 2 F by j0, BOOLE:11, j1;

hence m c= C by j0, X, j2;

case ex y being set st y 2 B & y c=x; then consider y being set such that

j5: y 2 B & y c=x; assume B U fxg <> ;; consider m being set such that

j3:m 2 B and

j4: for C being set st C 2 B holds m c= C by j0, j5, BOOLE:def 1;

m c= y by j4, j5; then j6:m c= x by j5, BOOLE:29;

take m; thus m 2 B U fxg by j3, BOOLE:8;

let C be set; assume C 2 B U fxg; then C 2 B or C 2 fxg by BOOLE:8;

hence m c= C by j4, j6, TARSKI:def 1; end;

hence P[B U fxg]; end;

P[F] from Finite(Z, A, B);

hence thesis by Y; end;

306

definition let M be MetrSpace;

mode contraction of M -> Function of the carrier of M, the carrier of M

means :DD: ex L being Real st 0<L & L<1 &

for x, y being Point of M holds dist(it.x, it.y)�L�dist(x, y);

existence proof consider x being Point of M;

(the carrier of M) --> x is Function of the carrier of M, the carrier of M proof

thus dom ((the carrier of M) --> x) = the carrier of M by FUNCOP 1:19;

cc:rng ((the carrier of M) --> x) c= fxg by FUNCOP 1:19;

fxg c= the carrier of M by ZFMISC 1:37;

hence rng ((the carrier of M) --> x) c= the carrier of M by BOOLE:29, cc; end;

then reconsider f = (the carrier of M) --> x

as Function of the carrier of M, the carrier of M;

take f, 1/2; 0<1; hence aa: 0<1/2 & 1/2<1 by SEQ 2:3, SQUARE 1:3;

let z, y being Point of M; f.z=x & f.y=x by FUNCOP 1:13;

then bb: dist(f.z, f.y) = 0 by METRIC 1:def 3; dist(z, y)�0 by METRIC 1:7;

hence dist(f.z, f.y)�(1/2)�dist(z, y) by bb, aa, REAL 2:121; end;

end;

theorem for f being contraction of M st TopSpaceMetr(M) is compact

ex c being Point of M st f.c =c & :: exists a fix point

for x being Point of M st f.x=x holds x=c :: exactly 1 fix point

proof

let f be contraction of M; consider L being Real such that

a1: 0<L & L<1 and

a2: for x, y being Point of M holds dist(f.x, f.y)�L�dist(x, y) by DD;

assume a7: TopSpaceMetr(M) is compact; consider x0 being Point of M; set a=dist(x0, f.x0);

now assume a <> 0;

consider F being Subset-Family of the carrier of TopSpaceMetr(M) such that

kkk: for B being Subset of the carrier of TopSpaceMetr(M) holds B2F iff

ex n being Nat st B = f x where x is Point of M : dist(x, f.x) � a�L to power n g

from SubFamEx;

TopSpaceMetr(M) = TopStruct�the carrier of M, Family open set(M)� by PCOMPS 1:def 6; then

d5: the carrier of M = the carrier of TopSpaceMetr(M);

set B = f x where x is Point of M : dist(x, f.x) � a�L to power (0+1) g;

B is Subset of the carrier of M from SubsetD; then B 2 F by kkk, d5; then

d1: F<>; by BOOLE:def 1;

a8: F is centered proof thus F <> ; by d1;

let G be Subset-Family of the carrier of TopSpaceMetr(M) such that

b1: G <> ; and b2: G c= F and b3: G is finite;

for B, C being set st B 2 G & C 2 G holds B c= C or C c= B proof

let B, C be set ; assume h0:B 2 G & C 2 G; then h3: B 2 F & C 2 F by b2, BOOLE:11;

B is Subset of the carrier of TopSpaceMetr(M) by SETFAM 1:43, h0;

then consider n being Nat such that

h4: B = f x where x is Point of M : dist(x, f.x) � a�L to power n g by kkk, h3;

C is Subset of the carrier of TopSpaceMetr(M) by SETFAM 1:43, h0;

then consider m being Nat such that

h5: C = f x where x is Point of M : dist(x, f.x) � a�L to power m g by kkk, h3;

lemma1: for n, m being Nat st n�m holds L to power m � L to power n proof

let n, m being Nat such that iii: n�m;

now per cases by iii, REAL 1:def 5;

case n<m; then L to power n > L to power m by POWER:45, a1;

hence L to power n � L to power m by REAL 1:def 5;

case n=m; hence L to power n � L to power m; end;

hence thesis; end;

lemma2: for n, m being Nat st n�m holds a�L to power m � a�L to power n proof

let n, m being Nat such that iii: n�m;

now per cases;

case c: a=0; then a�L to power m = 0 by REAL 1:20 .= a�L to power n by REAL 1:20, c;

307

hence a�L to power m � a�L to power n;

case a<>0; cc: a�0 by METRIC 1:7; L to power m � L to power n by iii, lemma1;

hence a�L to power m � a�L to power n by cc, REAL 1:51; end;

hence thesis; end;

now per cases by AXIOMS:23;

case i:n�m; thus C c= B proof let y be Any; assume y 2 C;

then consider x being Point of M such that

C1: y = x and C2: dist(x, f.x) � a�L to power m by h5;

a�L to power m � a�L to power n by i, lemma2; then

dist(x, f.x) � a�L to power n by AXIOMS:22, C2;

hence y 2 B by C1, h4; end;

case ii:m�n; thus B c= C proof let y be Any; assume y 2 B;

then consider x being Point of M such that

C1: y = x and C2: dist(x, f.x) � a�L to power n by h4;

a�L to power n � a�L to power m by ii, lemma2; then

dist(x, f.x) � a�L to power m by AXIOMS:22, C2;

hence y 2 C by C1, h5; end; end;

hence B c= C or C c= B; end; then consider m being set such that

n1: m 2 G and n2: for C being set st C 2 G holds m c= C by VIT, b1, b3;

n3: m c= meet G by SETFAM 1:6, b1, n2; n4: m 2 F by n1, BOOLE:11, b2;

h5: m is Subset of the carrier of TopSpaceMetr(M) by SETFAM 1:43, n1;

CC: L <> 0 by a1; dist(x0,f.x0) = a�1 by REAL 1:7 .= a�L to power 0 by POWER:29, CC;

then x0 2 f x where x is Point of M : dist(x, f.x) � a�L to power 0 g; then

P: f x where x is Point of M : dist(x,f.x) � a�L to power 0 g <> ; by BOOLE:def 1;

P': for k being Nat st fx where x is Point of M : dist(x, f.x) � a�L to power kg <> ;

holds fx where x is Point of M : dist(x,f.x) � a�L to power (k+1)g <> ;

proof let k be Nat; assume fx where x is Point of M : dist(x,f.x) � a�L to power kg <> ;;

then consider z being Any such that

s1: z2f x where x is Point of M : dist(x, f.x) � a�L to power k g by BOOLE:def 1;

consider y being Point of M such that y=z and s2: dist(y,f.y)� a�L to power k by s1;

L � 0 by a1, REAL 1:def 5; then s4: L�dist(y,f.y) � L�(a�L to power k) by REAL 1:51, s2;

s3: L�(a�L to power k) = L�a�L to power k by AXIOMS:16 .= a�L�L to power k by AXIOMS:15

.= a�(L�L to power k) by AXIOMS:16 .= a�(L to power 1�L to power k) by POWER:30

.= a�(L to power k�L to power 1) by AXIOMS:15 .= a�L to power (k+1) by POWER:32, a1;

dist(f.y, f.(f.y)) � L�dist(y, f.y) by a2; then

dist(f.y, f.(f.y)) � a�L to power (k+1) by s3, s4, AXIOMS:22; then

f.y 2 f x where x is Point of M : dist(x, f.x) � a�L to power (k+1) g;

hence f x where x is Point of M : dist(x,f.x)�a�L to power (k+1) g <> ; by BOOLE:def 1;

end;

for k being Nat holds f x where x is Point of M : dist(x,f.x) � a�L to power kg <> ;

from Ind(P, P'); then m <> ; by h5, kkk, n4;

hence meet G <> ; by BOOLE:30, n3; end;

F is closed proof let B being Subset of the carrier of TopSpaceMetr(M);

assume B 2 F; then consider n being Nat such that

mm: B= f x where x is Point of M : dist(x, f.x) � a�L to power n g by kkk;

A1: TopSpaceMetr(M)=TopStruct�the carrier of M, Family open set(M)� by PCOMPS 1: def 6;

then reconsider V = B` as Subset of the carrier of M; set B' = B`;

for x being Point of M st x 2 V ex r being Real st r>0 & Ball(x, r) c= V proof

let x be Point of M such that m1: x 2 V; take r = (dist(x, f.x)-a�L to power n)/2;

2<>0; then 2�r = dist(x, f.x)-a�L to power n by REAL 2:73; then

m20: dist(x,f.x)-2�r = a�L to power n by REAL 2:12; not x2B by m1, SUBSET 1:53; then

dist(x,f.x)>a�L to power n by mm; then dist(x,f.x)-a�L to power n>0 by REAL 2:108;

hence r>0 by SEQ 2:3;

let z be Any; assume m: z 2 Ball(x, r); Ball(x, r) c= the carrier of M by AXIOMS:2;

then reconsider y=z as Point of M by BOOLE:11, m; m8: dist(x, y)<r by METRIC 1:19, m;

dist(x, y) + dist(y, f.y) � dist(x, f.y) by METRIC 1:6; then

m13: (dist(x,y)+dist(y,f.y))+dist(f.y,f.x) � dist(x,f.y)+dist(f.y,f.x) by REAL 1:53;

dist(x, f.y) + dist(f.y, f.x) � dist(x, f.x) by METRIC 1:6; then

308

dist(x, y)+dist(y, f.y)+dist(f.y, f.x)�dist(x, f.x) by m13, AXIOMS:22; then

dist(y, f.y)+dist(x, y)+dist(f.y, f.x)�dist(x, f.x) by AXIOMS:12; then

m6: dist(y, f.y)+(dist(x, y)+dist(f.y, f.x))�dist(x, f.x) by AXIOMS:13;

m10: dist(x, y) = dist(y, x) by METRIC 1:5; m3: dist(f.y, f.x)�L�dist(y, x) by a2;

dist(y, x)�0 by METRIC 1:7; then L�dist(y, x)�dist(y, x) by REAL 2:147, a1;

then dist(f.y, f.x)�dist(y, x) by m3, AXIOMS:22; then

m4: dist(f.y, f.x)+dist(y, x) � dist(y, x)+dist(y, x) by REAL 1:49;

2>0; then 2�dist(x, y)<2�r by m8, REAL 1:70; then

m9: dist(y, f.y) + 2�dist(x, y)< dist(y, f.y) + 2�r by REAL 1:59;

dist(f.y, f.x)+dist(y, x) � 2�dist(y, x) by m4, SQUARE 1:5; then

dist(y, x) + dist(f.y, f.x) � 2�dist(y, x) by AXIOMS:12; then

dist(y,f.y)+(dist(y,x)+dist(f.y,f.x))�dist(y,f.y)+2�dist(y,x) by REAL 2:103;

then dist(y, f.y)+2�dist(x, y)�dist(x, f.x) by m6, AXIOMS:22, m10;

then dist(y, f.y)+2�r>dist(x, f.x) by REAL 1:58, m9; then

not ex x being Point of M st y=x & dist(x,f.x)�a�L to power n by m20, REAL 1:91;

then m22: not y 2 B by mm; the carrier of M <> ; by DOMAIN 1:1;

hence z 2 V by SUBSET 1:50, m22, A1; end; then

B` 2 Family open set(M) by PCOMPS 1:def 5; then B' is open by A1, PRE TOPC:def 4;

hence B is closed by TOPS 1:29;

end; then

meet F<>; by COMPTS 1:13,a8,a7; then consider c' being Point of TopSpaceMetr(M) such that

d2: c'2meet F by SUBSET 1:10;

reconsider c = c' as Point of M by d5; consider s' being Real Sequence such that

b3: for n being Nat holds s'.n=L to power (n+1) from ExRealSeq; set s = a 2 s';

b6'': s' is convergent & lim s'=0 by a1, SERIES 1:1, b3; then

b6: s is convergent by SEQ 2:21;

b6': lim s = a�0 by b6'', SEQ 2:22 .= 0 by REAL 1:20;

consider r being Real Sequence such that

b4: for n being Nat holds r.n=dist(c, f.c) from ExRealSeq;

b5: r is constant by SEQM 3: def 5, b4; then b7: r is convergent by SEQ 4:39;

now let n be Nat; set B = f x where x is Point of M : dist(x, f.x) � a�L to power (n+1)g;

B is Subset of the carrier of M from SubsetD; then B 2 F by kkk, d5; then

c2 B by d1, SETFAM 1:1, d2; then

d3: ex x being Point of M st c = x & dist(x, f.x) � a�L to power (n+1);

d3': r.n = dist(c, f.c) by b4; s.n = a�s'.n by SEQ 1:def 5 .= a�L to power (n+1) by b3;

hence r.n � s.n by d3, d3'; end; then

c1: lim r � lim s by SEQ 2:32, b6, b7; r.0=dist(c, f.c) by b4; then

dist(c, f.c)�0 & dist(c, f.c)�0 by c1, b6', METRIC 1:7, SEQ 4:40, b5; then

dist(c, f.c)=0 by AXIOMS:21;

hence ex c being Point of M st dist(c, f.c) = 0;

end; then consider c being Point of M such that

XX: dist(c, f.c) = 0;

take c;

thus a4: f.c =c by METRIC 1: def 3, XX;

let x be Point of M ; assume a3: f.x=x; assume x<>c; then a6: dist(x,c)<>0 by METRIC 1:def 3;

dist(x, c)�0 by METRIC 1:7; then dist(x, c)>0 by REAL 1:def 5, a6; then

L�dist(x, c)<dist(x, c) by a1, REAL 2:145;

hence contradiction by a3, a4, a2;

end;

309

D A Mizar abstract

Here is the abstract of the article presented in Appendix C. The abstracts are extracted me-

chanically from the submitted articles and the reference identi�cation of Mizar items is au-

tomatically inserted. If one wants to make a reference to another article, they have to use

reference names as presented in the article's abstract.

:: Alicia de la Cruz

:: Fix Point Theorem for Compact Spaces

environ

vocabulary METRYKA,SFAMILY,POWER1,FINITE,SEQ1,SEQ2,SEQM,SUB OP,REAL 1,TOPCON,

PCOMPS,FUNC,TOP2,FAM OP,BOOLE,FINITER2,ALI2,FUNC REL;

signature FINSET 1,METRIC 1,FUNCT 1,FUNCT 2,PRE TOPC,POWER,BOOLE,FUNCOP 1,

TARSKI,COMPTS 1,PCOMPS 1,SETFAM 1,TOPS 1,TOPS 2,SEQ 1,SEQ 2,SEQM 3,

SUBSET 1,REAL 1,NAT 1;

begin

reserve M for MetrSpace,x,y for Element of the carrier of M;

theorem :: ALI2:1

for F being set st F is finite & F <> ; &

for B,C being set st B 2 F & C 2 F holds B c= C or C c= B

ex m being set st m 2 F & for C being set st C 2 F holds m c= C;

definition let M be MetrSpace;

mode contraction of M -> Function of the carrier of M , the carrier of M

means :: ALI2:def 1

ex L being Real st 0<L & L<1& for x,y being Point of M holds

dist(it.x,it.y)�L�dist(x,y);

end;

theorem :: ALI2:2

for f being contraction of M st TopSpaceMetr(M) is compact

ex c being Point of M st f.c =c & :: exists a fix point

for x being Point of M st f.x=x holds x=c;

E A T

E

Xed Mizar abstract

Mizar abstracts are further mechanically processed, typeset using T

E

X, and published (see

footnote on page 296). Each author of an article accepted to the library must provide a title,

the author's name and address, and a summary (in English) that are included into the typeset

abstract.

The next two pages contain a copy of the typeset version of the abstract from Appendix D

One can consider the English of the text rather poor, but it should be remembered that this

text has been generated mechanically. The process of mechanical translation from Mizar into

English is still being worked on.

310

311

312

Kripke Semantics for a Logical Framework

Alex K. Simpson

�

als@dcs.ed.ac.uk

Department of Computer Science, University of Edinburgh,

JCMB, The King's Buildings, Edinburgh, EH9 3JZ

July 1992

Abstract

We present a semantic analysis (using Kripke lambda models) of a meta-logic (minimal

implicational predicate logic with quanti�cation over all higher types) with emphasis on its

use as a logical framework. An object-logic is encoded by a meta-theory axiomatising its

consequence relation. Properties of the encoding, such as adequacy, are analysed in terms

of corresponding semantic properties. In the case of adequacy we are able to prove the

interesting \faithfulness" direction by showing that the meta-theory has a certain kind of

model. The semantics is also used to analyse conditions under which the admissibility of an

inference rule is provable in the meta-logic.

1 Introduction

The aim of this paper is to give a semantic analysis of the use of a meta-logic as a logical

framework.

The meta-logic we consider is a fragment of intuitionistic predicate logic with quanti�cation

over all higher types. The idea of using such a logic as a framework goes back to the Edinburgh

Logical Framework (LF) [6] (although this was itself partly inspired by de Bruijn's AUTOMATH

[3] and Martin-L�of's system of arities [11]). Although LF is a dependently-typed lambda-

calculus, it can be viewed as a fragment of intuitionistic logic using the propositions as types

correspondence. Intuitively, however, it is quite natural to separate types from propositions.

For example, the LF type (we follow the notation of [6]):

�' :o:� :o:true(')! true(' _) (1)

can be read naturally as the proposition:

8' :o: 8 :o: true(') � true(' _) (2)

One is thus replacing the \judgements as types" principle of [6] with some kind of meta-

axiomatisation. This separation between propositions and types has been made explicit in

the applications of Isabelle and �Prolog as logical frameworks (see [12, 4]).

There are a number of advantages to the LF approach. One merit is the obvious simplicity of

having a calculus with only one connective (dependent product). Another is that the judgements

�

Supported by SERC grant no. 90311820.

313

as types principle enables proofs to be explicitly represented as terms of the framework. With

this understanding the type (1) is the natural type for the _-introduction rule which, given two

formulae ' and together with a proof of ', constructs a proof of ' _ . Finally, the idea of

separating propositions and types, though natural in some cases, might be less so in general.

The single ontology of LF allows for the maximum
exibility in making encodings.

Nevertheless there are also good reasons for separating propositions and types. One is

that a framework should distinguish between syntax and logical consequence. Syntax will still

be represented by terms of appropriate type, but now consequence is expressed by a meta-

axiomatisation. However, these kind of separations can also be made to good e�ect in a wholly

type-theoretical setting (see [5]). A second argument is to prefer the meta-logical approach

on the grounds that the main bene�t o�ered by the type-theoretic approach, explicit proof

representation, is neither important nor desirable. Proof representation is unimportant if one

takes the point of view that the feature of a logic of real interest is its consequence relation (see

section 4). An argument for the undesirability of proof representation, based on e�ciency, is

given in [12]. A further argument against the kind of proof representation o�ered by LF is that

it is too crude to capture many interesting proof systems (two sided sequent calculi for example).

In fact the numerous examples in [1] testify to LF as being good for representing consequence

in the general case, but good for representing proofs only in particularly well-behaved cases.

However, the main reason we are interested in distinguishing propositions and types is that

we wish to consider a logical framework as a meta-logic. We want to understand the encoding

of the logic as a commitment to certain meta-propositions about the logic (the proposition (2)

for example). In order to understand these meta-propositions mathematically, we require a

semantics for the meta-logic. Moreover, we want to relate the meta-propositions to the encoded

logic. So the semantics should be able to provide links between the encoded logic and its meta-

theory. These links will turn out to be very concrete. For example, in section 5 we build a

model of a meta-theory out of models of the logic it encodes.

The structure of this paper is as follows. In section 2 we introduce the meta-logic. In

section 3 we give it a Kripke semantics, proving soundness and completeness. Section 4 is then

a necessary preliminary to the rest of the paper. In it we survey various elementary properties

of consequence relations. The bulk of the paper is contained sections 5 and 6. In the former we

consider how the meta-logic can be used to encode logics. The property we are most interested in

is the \adequacy" of an encoding. This is given a semantic characterisation, which is then used

to give an example proof of adequacy. Finally, in section 6 we consider a notion of admissible

rule for a logic. The semantics is used to analyse under what conditions the admissibility of a

rule is provable in the meta-theory representing a logic.

Throughout this paper we consider many di�erent sequent-style judgements with sets for

the antecedent. In these we adopt the standard notational conventions of writing \," for \[",

omitting set delimiters from singleton sets and omitting explicit mention of the empty set.

2 The meta-logic

The meta-logic is minimal implicational predicate logic with universal quanti�cation over all

higher types. It is quite similar to the logics considered in [12, 4].

We use A, B and C to range over (simple) types, M and N to range over terms (of the

simply-typed �-calculus), and � and 	 to range over formulae (lower case Greek letters will be

reserved for formulae of the object-logic).

314

We assume given four countably in�nite, disjoint sets: a set of type constants, a set of

predicate symbols, a set of term constants and a set of variables. We use P to range over the

predicate symbols, c to range over the term constants and x to range over the variables.

A theory is generated by a presentation which is a quadruple, (T ;P;�;A), where each of

T , P, � and A are sets as speci�ed below. Mostly (but not exclusively) we consider �nite

presentations, ie. those in which all four sets are �nite.

T is a subset of the set of type constants. Types are generated from this set by the grammar:

A ::= � j A! B

where � ranges over elements of T . As usual, when brackets are omitted, \!" associates to

the right. P is a set of predicate declarations of the form P : hA

1

; : : : ; A

n

i (where n is possibly

zero) such that each predicate symbol, P , appears only once in the set. � is a set of constant

declarations of the form c :A such that each term constant, c, appears only once in the set. The

requirements on A are given below. Henceforth everything will be parameterised over T and P

and these sets will usually be left implicit. Thus we often refer to the presentation as (�;A).

A context, �, is a �nite set of variable declarations of the form x :A such that each variable,

x, appears only once in the set. The abstract syntax of terms and formulae is given by the

following grammar.

M ::= c j x j �x :A: M jM(N)

� ::= P (M

1

; : : : ;M

n

) j � � 	 j 8x :A: �

We assume that the reader understands the notion of free and bound variable. We write N [M=x]

and �[M=x] for the substitution of M for all free occurrences of x in N and � respectively.

Lambda-terms and quanti�ed formulae are considered identi�ed up to �-equivalence.

The term calculus is just the simply-typed lambda calculus (for which a good reference is

[9]). We write � �

�

M : A to mean that M is term over � with type A in context �. We

shall only be concerned with ��-equality, =

��

, between terms. We note (but shall not use) that

equality between terms is decidable. A term, M , such that � �

�

M :A is said to be in long-��

normal form (with respect to � and �) if it has the form:

�x

1

:A

1

: : : : �x

n

:A

n

: h(M

1

) : : : (M

m

)

where: n;m � 0; h is either a variable or a constant; �; x

1

:A

1

; : : : ; x

n

:A

n

�

�

h(M

1

) : : : (M

m

) :�

for some type constant �; and each M

i

(1 � i � m) is in long-�� normal form with respect to

�; x

1

:A

1

; : : : ; x

n

:A

n

and �. Clearly any M in long-�� normal form with respect to � and � is

also in long-�� normal form with respect to �

0

� � and �

0

� �. The crucial property of long-��

normal forms is the following (see [8]): if � �

�

M :A then there is a unique term, ��(M), in

long-�� normal form (with respect to � and �) such that M =

��

��(M).

In Figure 5 we give a formal system for deriving judgements of the form � �

�

� prop. We

often write simply � �

�

� prop to mean that the given judgement is derivable, in which case

we say that � is well-formed in � and �. When � is the empty set it is omitted from such

statements. � will only be omitted when it can be understood from the context.

The fourth component of the presentation, A, is a set of formulae, the axioms, such that

each formula in A is well-formed in �.

Logical consequence for (�;A):

�;H `

(�;A)

�

315

� �

�

M

1

:A

1

: : : � �

�

M

n

:A

n

P :hA

1

; : : : ; A

n

i 2 P

� �

�

P (M

1

; : : : ;M

n

) prop

� �

�

� prop � �

�

	 prop �; x :A �

�

� prop

� �

�

� � 	 prop � �

�

8x :A: � prop

Figure 5: Well-formedness rules for formulae.

Ax � 2 A Ass � 2 H

�;H `

(�;A)

� �;H `

(�;A)

�

Sub �;H `

(�;A)

�[M=x] M =

��

N

�;H `

(�;A)

�[N=x]

� I �;H;� `

(�;A)

	 � E �;H `

(�;A)

� � 	 �;H `

(�;A)

�

�;H `

(�;A)

� � 	 �;H `

(�;A)

	

8I �; x :A;H `

(�;A)

� 8E �;H `

(�;A)

8x :A: � � �

�

M :A

�;H `

(�;A)

8x :A: � �;H `

(�;A)

�[M=x]

Restriction on 8I: x does not occur free in H.

Figure 6: Rules for meta-logical consequence.

316

relates �, H and � where H is a set of formulae, the hypotheses, and each formula in H [f�g

is well-formed in � and �. This relation is given by the formal system of Figure 6.

In the sequel we shall require the following elementary derived result about consequence.

Lemma 2.1 (weakening) If �;H `

(�;A)

� and all formulae in H

0

are well-formed in � [�

0

then �;�

0

;H;H

0

`

(�;A)

�.

The easy proof, by induction on the structure of derivations, is omitted.

3 Semantics

As the meta-logic is intuitionistic with quanti�cation over all higher types, we seek a semantics

in terms of Kripke models in which all typed lambda terms can be interpreted at each world.

The Kripke lambda models of Mitchell and Moggi [9] are thus a natural choice. Although we

follow their paper quite closely, the reader is advised that some of our notation and terminology

di�ers from that of [9].

An (extensional, Kripke, T -P-)prestructure is a sextuple:

hW;�; f[[A]]

w

g; f[[P]]

w

g; f�

AB

w

g; fi

A

ww

0

gi

where:

� W is a set of worlds partially orded by �.

� f[[A]]

w

g is a family of sets, [[A]]

w

, indexed by types, A, and worlds, w.

� f[[P]]

w

g is a family of relations, [[P]]

w

� [[A

1

]]

w

� : : :� [[A

n

]]

w

, indexed by predicate symbols,

P , with declarations, P :hA

1

; : : : ; A

n

i, in P and worlds, w.

� f�

AB

w

g is a family of functions, �

AB

w

: [[A ! B]]

w

� [[A]]

w

�! [[B]]

w

, indexed by pairs of

types, A, B, and worlds, w.

� fi

A

ww

0

g is a family of functions, i

A

ww

0

: [[A]]

w

! [[A]]

w

0

, indexed by types, A, and pairs of

worlds, w � w

0

.

subject to the conditions given below. In these (and henceforth) we adopt the following nota-

tional conventions. When f 2 [[A ! B]]

w

and a 2 [[A]]

w

, we write f(a) for �

AB

w

(f; a). When

a

w

2 [[A]]

w

and w � w

0

, we write a

w

0

for i

A

ww

0

(a

w

).

The conditions are:

identity: For all worlds w, i

A

ww

is the identity.

composition: For all w � w

0

� w

00

, i

A

w

0

w

00

� i

A

ww

0

= i

A

ww

00

.

naturality: For all w � w

0

, i

B

ww

0

� �

AB

w

= �

AB

w

0

� (i

A!B

ww

0

� i

A

ww

0

).

extensionality: If f

w

; g

w

2 [[A! B]]

w

and, for all w

0

� w, for all a 2 [[A]]

w

0

:

f

w

0

(a) = g

w

0

(a)

then f

w

= g

w

.

317

persistency: If [[P]]

w

(a

1w

; : : : ; a

nw

) then, for all w

0

� w, [[P]]

w

0

(a

1w

0

; : : : ; a

nw

0

).

Thus a prestructure is an \extensional Kripke applicative structure" in the terminology of [9],

together with an extra parameter, f[[P]]

w

g, used for interpreting the predicates of the logic.

A partial element, p, of type A in a prestructure is given by an upper-closed subset dom(p) �

W , its domain, and a family of elements, fp

w

g, indexed by worlds w 2 dom(p) such that for all

w

0

� w 2 dom(p), p

w

2 [[A]]

w

and i

A

ww

0

(p

w

) = p

w

0

. Given p

w

2 [[A]]

w

, we write p for the induced

partial element of type A with domain fw

0

j w � w

0

g given by the elements p

w

0

2 [[A]]

w

0

. A

global element is a partial element, p, for which dom(p) = W .

A structure is an 8-tuple:

hW;�; f[[A]]

w

g; f[[P]]

w

g; f�

A

1

A

2

w

g; fi

A

ww

0

g; fK

AB

w

g; fS

ABC

w

gi

which is a prestructure extended by fK

AB

w

g and fS

ABC

w

g where:

� K

AB

is a global element of type A! B ! A such that, for all worlds w, for all a 2 [[A]]

w

,

for all b 2 [[B]]

w

, K

AB

w

(a)(b) = a.

� S

ABC

is a global element of type (A ! B ! C) ! (A ! B) ! A ! C such that,

for all worlds w, for all f 2 [[A ! B ! C]]

w

, for all g 2 [[A ! B]]

w

, for all a 2 [[A]]

w

,

S

ABC

w

(f)(g)(a) = f(a)(g(a)).

A �-structure is a 9-tuple:

hW;�; f[[A]]

w

g; f[[P]]

w

g; f[[c]]

w

g; f�

A

1

A

2

w

g; fi

A

ww

0

g; fK

AB

w

g; fS

ABC

w

gi

which is a structure extended by f[[c]]

w

g where:

� f[[c]]

w

g is a family of global elements, [[c]], of type A indexed by constants, c, with decla-

rations, c :A, in �.

Henceforth we refer to a �-structure as (W;�) leaving the other components implicit.

An environment, �, is a function from variables to partial elements. We say that � interprets

� at w if, for all x :A 2 �, �(x) is a partial element of type A with w 2 dom(�(x)). Clearly if

� interprets � at w and w

0

� w then � interprets � at w

0

too. Also any environment interprets

the empty context at any world. Given an environment � and an element a

w

2 [[A]]

w

we write

�[x := a] for the environment that agrees with � on variables other than x and which assigns

the induced partial element a to x. If � interprets � at w and a

w

2 [[A]]

w

then clearly �[x := a]

interprets �; x :A at w.

If M has type A in �, and � interprets � at w, then the interpretation, [[M]]

�

w

2 [[A]]

w

, of M

by � at w is de�ned inductively on the structure of M by:

[[c]]

�

w

= [[c]]

w

[[x]]

�

w

= �(x)

w

[[�x :A: M]]

�

w

= the unique f

w

2 [[A! B]]

w

(where A! B is the type of

�x :A: M in �) such that, for all w

0

� w, for all a

w

0

2 [[A]]

w

0

,

f

w

0

(a

w

0

) = [[M]]

�[x:=a]

w

0

[[M(N)]]

�

w

= [[M]]

�

w

([[N]]

�

w

)

As in [10], the existence of the f

w

required in the �x : A: M clause is given by the S and K

combinators, and its uniqueness is guaranteed by extensionality. Clearly if M is well-typed in

the empty context then the value of [[M]]

�

w

is independent of �, so we just write [[M]]

w

.

We now give some lemmas concerning the interpretation of terms in �-structures.

318

Lemma 3.1 If � �

�

M :A, � interprets � at w and w � w

0

, then i

A

ww

0

([[M]]

�

w

) = [[M]]

�

w

0

.

Lemma 3.2 If �; x : A �

�

M : B, � �

�

N : A and � interprets � at w, then [[M [N=x]]]

�

w

=

[[M]]

�[x:=[[N]]

�

]

w

.

Lemma 3.3 If � �

�

M :A, M =

��

N , and � interprets � at w, then [[M]]

�

w

= [[N]]

�

w

.

The �rst two lemmas are proved by straightforward inductions on the structure of M . The

third is proved by an induction on derivations (in the usual formal system for ��-equality) of

M =

��

N , using Lemma 3.2 in the veri�cation �-equality.

If � is well-formed in �, and � interprets � at w, then the \forcing" relation w j=

�

� is

de�ned inductively on the structure of � by:

w j=

�

P (M

1

; : : : ;M

n

) i� [[P]]

w

([[M

1

]]

�

w

; : : : ; [[M

n

]]

�

w

)

w j=

�

� � 	 i� for all w

0

� w, if w

0

j=

�

� then w

0

j=

�

	

w j=

�

8x :A: � i� for all w

0

� w, for all a

w

0

2 [[A]]

w

0

, w

0

j=

�[x:=a]

�

If H is a set of formulae, each well-formed in �, and � interprets � at w then we write w j=

�

H

to mean that w j=

�

�, for all � 2 H. If � is well-formed in the empty context then whether

w j=

�

� holds or not is independent of �, so we write w j= �. We write (W;�) j= � to mean,

for all w 2W , w j= �.

The lemmas below give basic properties of the forcing relation.

Lemma 3.4 If w j=

�

� and w � w

0

then w

0

j=

�

�.

Lemma 3.5 If � �

�

M : A and � interprets � at w, then w j=

�

�[M=x] if and only if

w j=

�[x:=[[M]]

�

]

�.

Both these lemmas are proved by induction on the structure of �. The base case of the �rst

uses Lemma 3.1 together with the persistency property of the structure.

A (�;A)-model is a �-structure, (W;�), such that, for all � 2 A, (W;�) j= �.

Theorem 3.6 (soundness and completeness) The two statements below are equivalent.

1. �;H `

(�;A)

�.

2. For all (�;A)-models (W;�), for all w 2 W , for all � interpreting � at w, if w j=

�

H

then w j=

�

�.

We devote the rest of this section to an outline of the proof of the theorem.

Soundness (ie. 1. =) 2.) is proved by a straightforward induction on the derivation of

�;H `

(�;A)

�. Lemma 3.5 is used in the veri�cation of both the 8E rule and (in conjunction

with Lemma 3.3) the Sub rule.

To prove completeness we construct a particular model, (W

(�;A)

;�

(�;A)

) based on the pre-

sentation (�;A). The set of worlds is just:

W

(�;A)

= f(�;H) j every formula in H is well-formed in �g

Its partial order is given by:

(�;H) �

(�;A)

(�

0

;H

0

) i� � � �

0

and H � H

0

319

The interpretations of the other components of the �-structure are:

[[A]]

(�;H)

= fM j � �

�

M :A, M is in long-�� normal formg

[[P]]

(�;H)

(M

1

; : : : ;M

n

) i� �;H `

(�;A)

P (M

1

; : : : ;M

n

)

[[c]]

(�;H)

= ��(c)

�

AB

(�;H)

(M;N) = ��(M(N))

i

A

(�;H)(�

0

;H

0

)

(M) = M

K

AB

(�;H)

= ��(�x :A: �y :B: x)

S

ABC

(�;H)

= ��(�x :A! B ! C: �y :A! B: �z :A: x(z)(y(z)))

Proposition 3.7 (W

(�;A)

;�

(�;A)

) is a �-structure.

Proof. First, all the components are clearly well-de�ned, in particular i

A

(�;H)(�

0

;H

0

)

is, because

long-�� normal forms are preserved by context extensions. So we need only check the vari-

ous conditions. Identity, composition and naturality all follow trivially from the de�nitions of

i

A

(�;H)(�

0

;H

0

)

and �

AB

(�;H)

. Persistency is an immediate consequence of weakening (Lemma 2.1). To

prove extensionality: suppose M;M

0

2 [[A! B]]

(�;H)

are such that, for all �

0

� �, for all H

0

�

H, for all N 2 [[A]]

(�

0

;H

0

)

, ��(M(N)) = ��(M

0

(N)). Then in particular, for x 2 [[A]]

(�[fx:Ag;H)

(where x does not appear in �), ��(M(x)) = ��(M

0

(x)), and so M(x) =

��

M

0

(x). But then

�x :A: M(x) =

��

�x :A: M

0

(x) and so (by �-equality) M =

��

M

0

. But M and M

0

are both in

long-�� normal form, so M = M

0

, proving extensionality. It remains to check that K

AB

and

S

ABC

satisfy the required equalities, but these follow easily from the �-rule of typed lambda-

calculus. 2

Given a context � we construct a canonical environment �(�) as follows. If, for some

A, x : A 2 � then �(�)(x) is the partial element with domain f(�

0

;H) j � � �

0

g given by

�(�)(x)

(�

0

;H)

= ��(x). Otherwise, if there is no A such that x :A 2 � then �(�)(x) is the trivial

partial element with domain ;. Clearly, for all �

0

� �, �(�) interprets � at (�

0

;H).

We can now state the basic properties of (W

(�;A)

;�

(�;A)

).

Lemma 3.8 If � �

�

M :A and � � �

0

then [[M]]

�(�)

(�

0

;H)

= ��(M).

Proof. By an easy induction on the structure of M . 2

Lemma 3.9 �;H `

(�;A)

� if and only if (�;H) j=

�(�)

�.

Proof. By induction on the structure of �. The cases are:

P (M

1

; : : : ;M

n

): Immediate from de�nition of [[P]]

(�;H)

.

� � 	: Suppose �;H `

(�;A)

� � 	. Take any �

0

� � and H

0

� H such that (�

0

;H

0

) j=

�(�)

�. Clearly (�

0

;H

0

) j=

�(�

0

)

�. So, by the induction hypothesis, �

0

;H

0

`

(�;A)

�. Now

�

0

;H

0

`

(�;A)

� � 	, so �

0

;H

0

`

(�;A)

	. Then, by the induction hypothesis again,

(�

0

;H

0

) j=

�(�

0

)

	, so clearly (�

0

;H

0

) j=

�(�)

	 (all the variables in 	 are in �). Thus we

have shown that (�;H) j=

�(�)

� � 	 as required.

Conversely, suppose (�;H) j=

�(�)

� � 	. Now �;H;� `

(�;A)

�, so, by the induction

hypothesis, (�;H[f�g) j=

�(�)

�. But then, by the supposition, (�;H[f�g) j=

�(�)

	.

So, again by the induction hypothesis, �;H;� `

(�;A)

	. Thus clearly �;H `

(�;A)

� �

	.

320

8x :A: �: Suppose �;H `

(�;A)

8x :A: �. Take any �

0

� �, H

0

� H and M 2 [[A]]

(�

0

;H

0

)

.

Thus �

0

�

�

M :A and �

0

;H

0

`

(�;A)

8x :A: �, so �

0

;H

0

`

(�;A)

�[M=x]. Now, by the in-

duction hypothesis, (�

0

;H

0

) j=

�(�

0

)

�[M=x], so clearly (�

0

;H

0

) j=

�(�)

�[M=x]. Thus, by

Lemma 3.5, (�

0

;H

0

) j=

�(�)[x:=[[M]]

�(�)

]

�. Then, by Lemma 3.8, (�

0

;H

0

) j=

�(�)[x:=M]

� (as

M is necessarily in long-�� normal form). We have therefore shown that (�;H) j=

�(�)

8x :A: � as required.

Conversely, suppose (�;H) j=

�(�)

8x :A: �. Then ��(x) 2 [[A]]

(�[fx:Ag;H)

. So

(� [fx :Ag;H) j=

�(�[fx:Ag)

�. Then, by the induction hypothesis, �; x :A;H `

(�;A)

�.

So clearly �;H `

(�;A)

8x :A: �.

2

Corollary 3.10 (W

(�;A)

;�

(�;A)

) is a (�;A)-model.

Proof. Immediate. 2

We now �nish the proof of completeness. Suppose that 2. holds. Then in particular

(�;H) j=

�(�)

�. So, by Lemma 3.9, �;H `

(�;A)

� as required.

It is worth comparing our use of Kripke lambda models with the use in [9]. In both cases

the role of the partial order is to model intuitionistic entailment. But there are di�erences

in emphasis due to the di�erent logical languages considered. In [9], although it is remarked

that the models interpret full intuitionistic predicate logic with quanti�cation over all higher

types, only the interpretation of equations is given explicitly. This is because their interest is

in obtaining a completeness theorem for the usual equational consequence relation of the typed

lambda-calculus when empty types are permitted. In this paper we too are not making full use

of the scope of the models. We consider only a fragment of the full intuitionistic logic, and we

have no equality predicate in the logic. The absence of equality means that the de�nition of

model could be simpli�ed in various ways. For example, it would be possible to insist that the

coercions, i

A

ww

0

, are injections. However, such restrictions are unnatural (we shall have use for a

model in which the coercions are not inclusions). Furthermore, we wish to keep the de�nition

of model in its full generality to allow the logic to be extended with equality (and indeed the

other connectives) if desired. Note that a completeness proof for the logic with equality would

require a model built out of equivalence classes of terms (as in [9]), for unique long-�� normal

forms would no longer be available.

4 Logics as consequence relations

The emphasis of this paper is to be on the use of the meta-logic as a logical framework. In

order to investigate this formally, we need to consider what it means to encode a logic. So, as

a preliminary step, it is necessary that we establish a precise notion of logic.

We consider a logic to be a pair, (L;`), where L is a countable set (of formulae) and

`� }(L)�L is a (possibly non-compact) consequence relation. This viewpoint is over simplistic

on (at least) two counts. First, there is no analysis of the underlying syntax of formulae.

Second, many well-known logics have consequence relations that are not ordinary. One might

also criticise on the grounds that proof-theory and semantics ought to be important components

in the de�nition of a logic. But generally the consequence relation really is the fundamental

characteristic of a logic. Though one is often interested in many di�erent proof systems and

semantics for the same logic, the consequence relation remains invariant. However, it is to be

321

hoped that natural extensions of the above notion of logic, taking syntax, proof-theory and

semantics into account, will arise.

Actually, even according to the above approach, semantic issues are not entirely overlooked.

It turns out that the consequence relations we consider correspond exactly to the entailment

relations of languages with a certain kind of \validity-style" semantics. It is this correspondence

that motivates the choice of de�nition of consequence relation. It is fair to say that the semantic

correspondence is not very deep, but this is inevitable when we work with such a super�cial

notion of syntax.

For the moment we suppose a given L and an arbitrary ` � }(L) � L. We use ', and

� to range over elements of L, and � to range over subsets of L. Every set of formulae, �,

determines a theory, Th

`

(�), de�ned by:

Th

`

(�) = f' j � ` 'g

We de�ne Theories

`

= fTh

`

(�) j � � Lg, the set of theories of `. Note that L itself may

well be a theory (it will be whenever ` is a consequence relation). It will be a recurring theme

that the \inconsistent" theory will not be distinguished, thus enabling many de�nitions to be

more uniform. If desired, all de�nitions could be easily repaired to treat the inconsistent theory

separately.

De�nition 4.1 (consequence relation) ` is a consequence relation if it satis�es the follow-

ing two conditions.

CR1 If ' 2 � then � ` '.

CR2 If �

0

` ' and, for all '

0

2 �

0

, � ` '

0

then � ` '.

A consequence relation, `, is said to be compact if, whenever � ` ', there is a �nite �

0

� �

such that �

0

` '.

De�nition 4.2 (validity-style semantics) A validity-style semantics for ` is a pair, (Mod; j=

), where Mod is a set (of \models") and j=� Mod�L is a (\satisfaction") relation satisfying:

� ` ' i� for all M2 Mod, if, for all '

0

2 �, M j= '

0

then M j= '

Theorem 4.3 The following are equivalent.

1. ` is a consequence relation.

2. Th

`

is a closure operation on }(L).

3. ` has a validity-style semantics.

Proof. It is easy to check that 1. is equivalent to 2. and that 3. implies 1.. To see that 1.

implies 3., assume that ` is a consequence relation. We now exhibit a validity-style semantics

for `. The set of models is:

Mod = }(L)

and the satisfaction relation is de�ned by:

� j= ' i� � ` '

322

It is easy to check that this is indeed a validity-style semantics for `. 2

Theorem 4.3 gives the promised correspondence between consequence relations and semantics.

One way in which it is rather shallow is that it says nothing about the existence or nature of

\interesting" models.

Henceforth we take ` to be a consequence relation over L, and (Mod; j=) to be a chosen

validity-style semantics for `.

We now �x some notation that we shall use later on. Each set of formulae, �, determines

a set of models, Mods

j=

(�), de�ned by:

Mods

j=

(�) = fM j for all ' 2 �, M j= 'g

We say that M 2 Mods

j=

(�) is a model of �. In fact the set of models is determined by the

theory of �, that is, Mods

j=

(�) = Mods

j=

(Th

`

(�)). Note again that the inconsistent theory,

L, is not treated specially in that Mods

j=

(L) may be non-empty. Conversely, each set of models,

S, determines a theory, Th

j=

(S), de�ned by:

Th

j=

(S) = f' j for all M2 S, M j= 'g

It is easy to check that Th

j=

(S) is indeed a theory.

The de�nition of consequence relation above is standard except that we do not follow the

common practice of assuming compactness. In essence it is equivalent to the relations considered

ever since Tarski introduced his consequence operators [15]. There are two reasons for not

assuming compactness. One is that many interesting non-compact logics exist. The second is

that without compactness we obtain the equivalences of Theorem 4.3. The notion of validity-

style semantics used in the theorem is a familiar one from abstract model theory [2]. The

correspondence between consequence relations and semantics is similar to Scott's truth-valuation

motivation for his two-sided consequence relations [14].

5 Encoding logics in the meta-logic

We now consider how the meta-logic can be used to encode the consequence relation of a logic.

An encoding of (L;`) is given by a presentation (T ;P;�;A) containing a distinguished type

constant, o 2 T , and a distinguished predicate, true, with declaration true : hoi 2 P, together

with a bijective function:

(�)

�

: L ! fM j�

�

M :o, M is in long-�� normal formg

mapping formulae of the object-logic to their representing terms in the meta-logic.

For an encoding to be of any use, it must respect the consequence relation of the encoded

logic. The encoding is said to be full if:

� ` ' implies true(�

�

) `

(�;A)

true('

�

)

where true(�

�

) denotes the set ftrue(

�

) j 2 �g. It is said to be faithful if:

true(�

�

) `

(�;A)

true('

�

) implies � ` '

An encoding which is both full and faithful is said to be adequate. Adequacy is a minimal

correctness condition. Without it there is a mismatch between the consequence relation of the

logic and its representation in the meta-logic.

323

Clearly any logic that has an adequate encoding must be compact (this is because of the

evident compactness of meta-logical consequence). In fact the converse holds: any compact logic

has an adequate encoding. We do not go into details as the encoding is obtained in a wholly

unilluminating way (for example one includes separate term constants for each ' 2 L) and is

in general in�nite. A more interesting result might be obtainable by considering some suitable

notion of e�ective consequence relation. The compactness of such a consequence relation ought

to follow from an adaptation of the Myhill-Sheperdson theorem of recursive function theory.

The desired theorem would be that the notion of e�ective consequence relation coincides with

that of consequence relation with an adequate �nite presentation.

The two halves of adequacy each correspond to conditions on the class of (�;A)-models.

Given a (�;A)-model, (W;�), de�ne form : W ! }(L) by:

form(w) = f' j w j= true('

�

)g

We write form(W) for the set fform(w) j w 2Wg.

Proposition 5.1 The following are equivalent:

1. The encoding is full.

2. For all (�;A)-models (W;�), form(W) � Theories

`

.

Proof. Suppose the encoding is full. Let (W;�) be any (�;A)-model, and take any w 2 W .

We must show that form(w) 2 Theories

`

. Suppose then that form(w) ` '. By fullness,

true(form(w)

�

) `

(�;A)

true('

�

). But, by de�nition of form(w), for all 2 form(w), w j=

true(

�

). So, by the soundness of the meta-logic, w j= true('

�

). But then ' 2 form(w). So

indeed form(w) 2 Theories

`

.

Conversely, suppose that, for all (�;A)-models (W;�), form(W) � Theories

`

. Suppose

further that � ` '. We must show that true(�

�

) `

(�;A)

true('

�

). For this we use the

model, (W

(�;A)

;�

(�;A)

), constructed in the proof of completeness in section 3. By Corol-

lary 3.10, we know this is indeed a (�;A)-model. Consider the world (;; true(�

�

)). By the

initial supposition, form((;; true(�

�

))) 2 Theories

`

. But clearly �

�

� form((;; true(�

�

))), so

' 2 form((;; true(�

�

))) (as any theory is closed under consequence). Therefore (;; true(�

�

)) j=

true('

�

). So, by the de�nition of (W

(�;A)

;�

(�;A)

), true(�

�

) `

(�;A)

true('

�

). 2

Proposition 5.2 The following are equivalent:

1. The encoding is faithful.

2. There exists a (�;A)-model, (W;�), such that Theories

`

� form(W).

Proof. Suppose the encoding is faithful. We will show that the (�;A)-model (W

(�;A)

;�

(�;A)

)

has the required property. Take any T 2 Theories

`

. We must show that there exists (�;H) 2

W

(�;A)

with form((�;H)) = T . For this, we take the world, (;; true(T

�

)). Clearly (from the de�-

nition of (W

(�;A)

;�

(�;A)

)) T � form((;; true(T

�

))). We now show that form((;; true(T

�

))) � T .

Suppose that ' 2 form((;; true(T

�

))). Then (;; true(T

�

)) j= true('

�

), so true(T

�

) `

(�;A)

true('

�

). Therefore, by faithfulness, T ` '. Thus indeed ' 2 T (as T is closed under con-

sequence).

Conversely, suppose there exists a (�;A)-model, (W;�), such that Theories

`

� form(W).

Suppose further that true(�

�

) `

(�;A)

true('

�

). We must show that � ` �. Let w 2W be such

324

that form(w) = Th

`

(�) (such a w is guaranteed to exist by the assumed property of (W;�)).

Clearly, for all 2 �, w j= true(

�

). So, by soundness, w j= true('

�

). But then ' 2 form(w)

so ' 2 Th

`

(�). Thus � ` ' as required. 2

The above propositions give the basic connections between the semantics of the meta-logic

and the use of the meta-logic as a logical framework. Due to the universal quanti�cation over

models, Proposition 5.1 is of mainly formal interest. In contrast, Proposition 5.2 is genuinely

useful and will provide an important tool in the sequel.

One important use of Proposition 5.2 will be to establish the adequacy of encodings. Proving

adequacy is a three stage process. First, it is necessary to de�ne the encoding function and

show that it is indeed a bijection as required. This task can only be done syntactically, usually

by an easy induction on the long-�� normal forms of appropriate types. Second, it is necessary

to establish fullness. Normally the easiest way to do this is to start with a proof system

for the encoded logic and map proofs of logical consequence in this system to proofs of the

representation of the consequence in the meta-logic. Again this step is usually straightforward.

Lastly, faithfulness remains to be proved. The standard technique is to show that the mapping

of proofs used in establishing fullness is itself a bijection onto meta-logical proofs in a certain

normal form. However, in order to do this it is necessary that the meta-theory does stand in

the right relationship to the proof system of the object-logic. Often this will not be the case,

either because of the inability of the meta-logic to exactly mimic the proof system or, more

positively, because the meta-theory allows other (still valid) inferences not directly avilable in

the original proof system (see the next section). No doubt, even in such di�cult cases, it is

still possible to prove faithfulness by a syntactic argument. However, Proposition 5.2 o�ers

an alternative approach. It is enough to construct a (�;A)-model with the requisite property

(which is usually apparent). These two approaches to proving faithfulness are analogous to the

two standard approaches to proving the underivability of a formula in logic using, on the one

hand, a normal-form result for derivations and, on the other, a model refuting the formula.

We conclude this section with an example semantic proof of adequacy. We shall show that

the presentation, (T

A

;P

A

;�

A

;A

Q

) (the \A" subscript stands for arithmetic, the \Q" subscript

stands for system Q), in Figure 7 gives an adequate encoding of the consequence relation,

(L

A

;`

Q

), of Robinson's arithmetic, Q. The language of Q is that of �rst-order arithmetic, with

terms, t, and formulae, ', in accordance with the grammar below.

t ::= x j 0 j s(t) j t

1

+ t

2

j t

1

� t

2

' ::= t

1

= t

2

j :' j ') j 8x: '

For simplicity we just consider two connectives (implication and negation) and one (the univer-

sal) quanti�er (which is enough as the logic is classical). Again, we assume that the notions of

free and bound variable are understood. As usual, a sentence is a formula with no free variables.

Although we have been informally referring to L as the formulae of the object-logic, here we

take L

A

to be the sentences of arithmetic. `

Q

is just classical �rst-order entailment over L

A

subject to the validity of the axioms for Q. Note that we are considering Q as a logic, and

hence as a consequence relation. This is a slight abuse of terminology, Q should really refer to

a particular theory: the sentences ' for which `

Q

'. However, we are more interested in the

logic than the theory, as (T

A

;P

A

;�

A

;A

Q

) will turn out to be adequate for logical consequence.

It is also of practical interest to encode the consequence relation. For example, we might want

to consider derivations from true (or even false) unprovable formulae such as G�odel's sentence

or various forms of induction.

325

T

A

= f�; og

P

A

= ftrue :hoig

�

A

= f): o! o! o; : : o! o; 8 : (�! o)! o; = : �! �! o;

0 : �; s : �! �; + : �! �! �; � : �! �! �g

A

Q

= f8' :o: 8 :o: true(')) ');

8' :o: 8 :o: 8� :o: true((')) �)) ('))) ') �);

8' :o: 8 :o: true((:') :))) ');

8' : �! o: 8t : �: true((8x: '(x))) '(t));

8t : �: true(t = t);

8' :o: 8 :o: true(')) � true(') � true();

8' :o: 8 : �! o: (8x : �: true(') (x))) � true(') 8x: (x));

8' : �! o: 8t

1

: �: 8t

2

: �: true(t

1

= t

2

) � true('(t

1

)) � true('(t

2

));

true(8x: 8y: s(x) = s(y)) x = y);

true(8x: : s(x) = 0);

true(8x: : x = 0) : 8y: : x = s(y));

true(8x: x+ 0 = x);

true(8x: 8y:x+ s(y) = s(x+ y));

true(8x: x � 0 = 0);

true(8x: 8y: x � s(y) = (x � y) + x)g

Figure 7: A presentation of Robinson's Q.

326

Before proving adequacy, we give a brief informal explanation of the presentation in Fig-

ure 7. There are two type constants: � for terms and o for formulae. The term constructors

in � generate the �rst-order language for arithmetic. Implication is deliberately distinguished

notationally from meta-logical implication, and universal quanti�cation is distinguished from

its meta-logic counterpart by a di�erent convention of usage. For readability we write), =, +

and � as in�x operators, using standard conventions (for example,) associates to the right).

We also write 8x:' for 8(�x : �: '). The axioms of the presentation divide naturally into groups.

The �rst �ve give axioms for classical �rst-order logic with equality, and the next three give

rules of inference (each of these groups subdivides further into a propositional part, a quanti�-

cational part and an equality part). The system presented is a quite standard Hilbert system,

though our slavery to Okham's razor means there is unlikely to be an identical system in the

literature. The next seven axioms are just the axioms of Q. These consist of Peano's six axioms

together with the additional axiom, 8x: : x = 0) : 8y: : x = s(y), necessary in the absence

of induction.

Given our notational conventions, it is now a simple matter to de�ne the mapping (�)

�

from

L

A

to long-�� normal forms of type o. If ' is a sentence then ' is also (the notation for) a

term of the meta-logic. Thus we take (�)

�

to be the identity map on notation. To see that

this has the correct properties one proves, by an easy induction on the structure of terms and

formulae, that if all free variables in t and ' are contained in the �nite set X of variables, then

fx : � j x 2 Xg �

�

A

t : � and fx : � j x 2 Xg �

�

A

' :o, and moreover t and ' are both in long-��

normal form. Further, by induction on the structure of long-�� normal forms of terms of type �

and o in contexts of the form fx : � j x 2 Xg, one shows that all such terms arise uniquely from

a t or a ' respectively. Thus, specialising to the case X = ;, we have that (�)

�

is a bijection as

required.

Next we should prove fullness. This step is easy in principle but tedious to carry out in

detail, so we give only the general outline. Take any Hilbert system for �rst-order logic with

equality, together with the axioms for Q (note that the Hilbert system chosen does not have

to be the same as that implicitly given in A

Q

). We want to translate derivations of ' from

assumptions '

1

, : : : , '

n

in the Hilbert system (where all the ', '

1

, : : : , '

n

are sentences) onto

proofs of true('

1

); : : : ; true('

n

) `

(�

A

;A

Q

)

true('). For this it is necessary to translate derivations

of open formulae from open formulae. Suppose then that ', '

1

, : : : , '

n

are formulae with all free

variables contained in the �nite set X = fx

1

; : : : ; x

k

g. We write 8X : �: � for the meta-formula

8x

1

: �: : : : 8x

k

: �: �. One can now prove, by induction on derivations in the Hilbert system, that

if ' follows from '

1

, : : : , '

n

, then:

8X : �: true('

1

); : : : ;8X : �: true('

n

) `

(�

A

;A

Q

)

8X : �: true(')

Again, specialising this to the case X = ; gives the desired result.

Only adequacy remains to be proved. To this end we construct a (�

A

;A

Q

)-model satisfying

the condition of Proposition 5.2. Let Mod

Q

be the \set" of all classical models of Q. For each

M in Mod

Q

we distinguish its internal structure as (N

M

; 0

M

; s

M

;+

M

; �

M

). We are going to

construct a (�

A

;A

Q

)-model (W

Q

;�

Q

). The partially ordered set of worlds is given by (W

Q

;�

Q

) = (}(Mod

Q

);�) (the reader who is bothered by the size problem should make some suitable

restriction such as only considering models,M, with domain, N

M

, contained in a given in�nite

set). A world is thus a subset S � Mod

Q

. Before giving the interpretations of the di�erent

components of the �

A

-structure at each world, we �rst interpret the type structure \pointwise"

at each M 2 Mod

Q

. The interpretation at S is then given by the S-indexed direct product of

the relevant pointwise interpretations.

327

Let M be any model of Q. The pointwise interpretation of types at M is given by the full

type hierarchy:

[[�]]

M

= N

M

[[o]]

M

=

[[A! B]]

M

= [[B]]

[[A]]

M

M

where
 = ftt;�g, the set of truth values. Rather than give an exhaustive treatment of the

constants in �

A

, we de�ne a representative sample. The interpretation of :, 8, = and + at

M will be elements [[:]]

M

2

, [[8]]

M

2

N

M

, [[=]]

M

2 (

N

M

)

N

M

and [[+]]

M

2 (N

N

M

M

)

N

M

respectively. These are de�ned by:

[[:]]

M

(b) =

(

tt if b = �

� if b = tt

[[8]]

M

(f) =

(

tt if, for all a 2 N

M

, f(a) = tt

� otherwise

[[=]]

M

(a

1

)(a

2

) =

(

tt if a

1

= a

2

� otherwise

[[+]]

M

(a

1

)(a

2

) = +

M

(a

1

; a

2

)

In short, the constants are interpreted in line with their real world meanings according to the

Tarskian semantics of �rst-order logic.

The combinators K

AB

and S

ABC

are given the usual pointwise interpretations. For example,

K

AB

M

2 ([[A]]

[[B]]

M

M

)

[[A]]

M

is de�ned by K

AB

M

(a)(b) = a.

The above interpretations of constants atM can be extended to all well-typed terms just by

taking the usual interpretation of the typed lambda calculus in the full type hierarchy. Thus if

� �

�

A

M :A and
 is a environment function mapping each variable x

i

with declaration x

i

:A

i

in � to an element of [[A

i

]]

M

, then M has an interpretation [[M]]

M

2 [[A]]

M

. When M is closed

we just write [[M]]

M

2 [[A]]

M

. The crucial property of the pointwise interpretation, the mimicry

of the Tarskian semantics, is given by the lemma below.

Lemma 5.3 If �

�

A

' :o then [[']]

M

= tt if and only if M j= '.

Proof. The proof is by induction on the structure of '. The induction passes through open

formulae and terms using the established correspondences between these and long-�� normal

forms of appropriate type.

For terms, suppose all variables in t are contained in the set X = fx

1

; : : : ; x

k

g. Given

 : X ! N

M

(recall [[�]]

M

= N

M

), one shows by an induction on t (similar to but easier than

the induction on ' given below) that [[t]]

M

is just the usual �rst-order interpretation of t inM

according to the environment
.

Now, for formulae, suppose all free variables in ' are contained in X as above. We show,

by induction on ', that, for all
 as above, [[']]

M

= tt if and only if M j=

'. The four cases

are:

t

1

= t

2

: [[t

1

= t

2

]]

M

= tt if and only if (by de�nition of [[=]]

M

) [[t

1

]]

M

= [[t

2

]]

M

if and only if

(by established result on terms) M j=

t

1

= t

2

.

:': [[:']]

M

= tt if and only if (by de�nition of [[:]]

M

) [[']]

M

= � if and only if (by induction

hypothesis) M 6j=

' if and only if M j=

:' .

328

') : Similar to :'.

8x: ': [[8(�X : �: ')]]

M

= tt if and only if (by de�nition of [[8]]

M

), for all a 2 N

M

, [[�X :

�: ']]

M

(a) = tt if and only if, for all a 2 N

M

, [[']]

[x:=a]

M

= tt (using an obvious notation

for updating
) if and only if (by induction hypothesis), for all a 2 N

M

, M j=

[x:=a]

'

if and only if M j=

8x: '.

The lemma follows by specialising to X = ;. 2

We can now de�ne all the remaining components of the �

A

-structure, (W

Q

;�

Q

). Types,

constants and combinators are interpreted at S by:

[[A]]

S

= �

M2S

[[A]]

M

[[c]]

S

= f[[c]]

M

g

M2S

K

AB

S

= fK

AB

M

g

M2S

S

ABC

S

= fS

ABC

M

g

M2S

The only predicate, true, is given the interpretation:

[[true]]

S

(fb

M

g

M2S

) i� for all M2 S, b

M

= tt

Finally, �

AB

S

and i

A

SS

0

(where S

0

� S) are de�ned by:

�

AB

S

(ff

M

g

M2S

; fa

M

g

M2S

) = ff

M

(a

M

)g

M2S

i

A

SS

0

(fa

M

g

M2S

) = fa

M

g

M2S

0

It is straightforward to check the required conditions showing that the construction above does

indeed give a �

A

-structure.

A basic but important property of the de�ned �

A

-structure relates the interpretation of

terms at S to their pointwise interpretations at allM 2 S.

Lemma 5.4 Suppose � �

�

A

M : A and � interprets � at S. De�ne, for M 2 S, a function

�

M

: X ! [[A]]

M

(where X is the set of variables in �) by:

�

M

(x) = a

M

where �(x)

S

= fa

M

g

M2S

Then [[M]]

�

S

= f[[M]]

�

M

M

g

M2S

.

Proof. By a straightforward induction on the structure on M . 2

Finally we are in a position to establish the facts we need to prove the faithfulness of

(�

A

; A

Q

). In the results below we make frequent use of the notation introduced on page 323.

Lemma 5.5 form(S) = Th

j=

(S).

Proof. We must show that S j= true(') if and only if, for all M 2 S, M j= '. But

S j= true(') if and only if [[']]

S

= fttg

M2S

if and only if (by Lemma 5.4), for all M 2 S,

[[']]

M

= tt if and only if (by Lemma 5.3), for allM 2 S, M j= '. 2

Proposition 5.6 (W

Q

;�

Q

) is a (�

A

;A

Q

)-model.

Proof. We must show that, for all � 2 A

Q

, (W

Q

;�

Q

) j= �. First note that for the last

seven axioms of A

Q

in Figure 7 this follows immediately from Lemma 5.5. Of the other eight

meta-axioms we validate three.

329

1. 8' :o: 8 :o: true(')) ').

Suppose we have S and � with �(')

S

= fa

M

g

M2S

and �()

S

= fb

M

g

M2S

. Then:

[[')) ']]

�

S

= f[[)]]

M

(a

M

)([[)]]

M

(b

M

)(a

M

))g

M2S

(by Lemma 5.4)

= fttg

M2S

So S j=

�

true(')) ') as required.

2. 8' :o: 8 : �! o: (8x : �: true(') (x))) � true(') 8x: (x)).

Suppose we have S and � with �(')

S

= fb

M

g

M2S

and �()

S

= ff

M

g

M2S

such that

S j=

�

8x : �: true(') (x)). Then for all fa

M

g

M2S

2 [[�]]

S

, S j=

�[x:=fa

M

g]

true(')

 (x)). So, by Lemma 5.4, for all a

M

2 N

M

, [[)]]

M

(b

M

)(f

M

(a

M

)) = tt. But then

[[)]]

M

(b

M

)([[8]]

M

(f

M

)) = tt (by the usual reasoning). And thus, again by Lemma 5.4,

[[') 8x: (x))]]

�

S

= fttg

M2S

. So S j=

�

true(') 8x: (x)) as required.

3. 8' : �! o: 8t

1

: �: 8t

2

: �: true(t

1

= t

2

) � true('(t

1

)) � true('(t

2

)).

Suppose we have S and � with �(')

S

= ff

M

g

M2S

, �(t

1

)

S

= fa

M

g

M2S

and �(t

2

)

S

=

fb

M

g

M2S

such that S j=

�

true(t

1

= t

2

) and S j=

�

true('(t

1

)). Then, applying Lemma 5.4

as above, it is easy to see that, for all M 2 S, a

M

= b

M

and f

M

(a

M

) = tt, so obviously

f

M

(b

M

) = tt. Now, again by Lemma 5.4, S j=

�

true('(t

2

)) as required.

The other axioms are validated in a similar way. 2

The faithfulness of (�

A

;A

Q

) now follows easily. We need only show that (W

Q

;�

Q

) has the

property required by Proposition 5.2. Let, T , be a theory of `

Q

. We must show that T =

form(S) for some S 2 W

Q

. De�ne S

T

= Mods

j=

(T). By the completeness theorem for �rst-

order logic, ' 2 T if and only if, for all M 2 S

T

, M j= '. So by Lemma 5.5, T = form(S

T

).

Note that the reader who has taken W

Q

to be de�ned over models,M, with N

M

contained in a

given in�nite set must do a little more work. In this case, S

T

is de�ned to be the set of models

of T of the appropriate form, so an appropriate weak form of the L�owenheim-Skolem theorem

is required to give completeness in terms of the models considered.

Perhaps the above proof of adequacy seems rather long-winded. Indeed, a syntactic proof

along the lines of those in [6, 12] would have probably been shorter. However, now that we have

constructed the model and established its properties we are free to exploit it without repeating

the e�ort. This we will do on page 338 to establish, very easily, the adequacy of an extension

of (�

A

;A

Q

). Another bene�t of the semantic proof is that the model constructed gives us some

intuition as to the meaning of meta-logical propositions.

Clearly, the above proof does not rely on any properties particular to Robinson's Q. In

fact analogous methods work for any �rst-order theory. However, now we confess to why we

considered Q in preference to Peano Arithmetic (PA). One would like to axiomatise the induction

schema by a single meta-axiom:

8' : �! o: true('(0)) (8x: '(x)) '(s(x)))) 8x:'(x))

And indeed adding this axiom to A

Q

(we call the new set A

PA

) does give an adequate presen-

tation of PA. Unfortately, the �

A

-structure constructed, following the above method, out of

models of PA is not a (�

A

;A

PA

)-model. The problem is easy to identify. The axiom giving the

induction principle has the full power of the second-order induction axiom in the �

A

-structure.

Thus it can not hold at any world (sets of models of PA) that contains a non-standard model of

330

arithmetic. One might try to patch this by restricting the pointwise interpretations of predicate

types to arithmetically de�nable relations. Thus [[�! o]]

M

and [[�! �! o]]

M

would be respec-

tively the unary and binary arithmetic relations in M. Unfortunately, this attempted remedy

is also doomed. Semantically we must be able to apply any element of [[� ! � ! o]]

M

to any

element of [[�]]

M

and obtain an element of [[�! o]]

M

. But if we apply a binary arithmetic rela-

tion to a non-standard element of N

M

, the resulting unary relation is no longer arithmetically

de�nable.

One way of avoiding the problem is to take, in place of the above meta-axiom for induction,

all instances of the following meta-schema:

true('(0)) (8x: '(x)) '(s(x)))) 8x:'(x))

(where ' ranges over f' j �

�

A

' : �! o, ' is in long-�� normal formg). With this schema the

constructed �

A

-structure does indeed give a model. However, this is clearly an unsatisfactory

solution. The presentation is in�nite whereas (�

A

;A

PA

) is an �nite presentation of PA.

It is possible to prove the adequacy of (�

A

;A

PA

) by constructing a syntactic model over

the lattice of theories of PA. We do not give details, as there is an example of a of similar (but

simpler) construction in the next section. A syntactic model could also be used to prove the

faithfulness of (�

A

;A

Q

). However, we preferred to give the above proof to show how, in some

cases, an entirely semantic proof is possible.

6 Admissible rules

In this section we develop a simple theory of sequent rules for an arbitrary logic. Given an

encoding of the logic, each rule has a corresponding meta-formula expressing its admissibility.

We use the semantics to investigate under what conditions the meta-formulae corresponding to

admissible rules are theorems in the meta-theory given by an adequate presentation.

Throughout this section (L;`) is an arbitrary consequence relation. When referred to, (�;A)

is assumed to be a presentation giving, by means of the mapping (�)

�

, an adequate encoding of

(L;`).

In examples we will often assume that each L has a binary implication connective,). By

this we mean that there is a distinguished injective function from L � L to L, and we write

') for the value of this function when applied to ' and . We say that ` satis�es modus

ponens if:

for all �, ' and , if � ` ') and � ` ' then � ` .

We say that ` satis�es the deduction theorem if:

for all �, ' and , if �; ' ` then � ` ') .

A sequent is a non-empty �nite sequence of formulae ('

1

; : : : ; '

m

; '). Normally one would

write '

1

; : : : ; '

m

` '. The reason for using such a neutral notation is that the symbols \`",

\!", \�" and \)" are already tied up. A rule has the form:

S

1

: : : S

n

S

(3)

where n � 0 and S

1

; : : : ; S

n

; S are all sequents. A sequent, ('

1

; : : : ; '

m

; '), is said to be �-valid

if �; '

1

; : : : ; '

m

` '. A rule (of the above form) is said to be admissible if:

331

for all �, if, for all i (1 � i � n), S

i

is �-valid then S is �-valid.

Thus, for example, the rule:

(';)

('))

(4)

is admissible for all ' and if and only if the deduction theorem holds for `.

Given a sequent S = ('

1

; : : : ; '

m

; '), consider the meta-formula, which we call S

�

, below.

true('

�

1

) � : : : � true('

�

m

) � true('

�

)

Intuitively this meta-formula expresses the meta-proposition that '

1

; : : : ; '

m

` ' holds. Now

given a rule, R, of the general form (3), de�ne its translation, R

�

, to be the meta-formula below.

S

�

1

� : : : � S

�

n

� S

�

Intuitively, this meta-formula expresses that the rule is admissible. The above intuitions will

be given substance by results below.

It is worth commenting on our notions of rule and admissibility and how these relate to

the usual notions. The most common notion of admissible rule is that given by Troelstra [16,

x1.11.1] (see also [7, pages 69{70]). However, there the notion of rule is one between formulae

rather than sequents and the notion of admissibility is with respect to a �xed theory rather

than a consequence relation. For us the consequence relation is of primary interest. It is for this

reason that we consider a more general form of rule with sequents for premisses and conclusion.

Now the notion of admissibility for a rule of the form (3) depends on how we stipulate that this

rule is to be applied. Suppose S

i

= ('

i1

; : : : ; '

im

i

;

i

) (1 � i � m) and S = ('

1

; : : : ; '

m

; ').

One possibility would be to stipulate that the rule is only applicable when, for all 1 � i � n,

'

i1

; : : : ; '

im

i

`

i

; in which case one deduces that '

1

; : : : ; '

m

` '. Clearly this notion of rule

application induces a di�erent notion of admissibility from ours. Our de�nition of admissibility

is motivated instead by the natural-deduction conception of rule application. Written in a more

suggestive format, we think of the rule above as:

['

11

; : : : ; '

1m

1

] ['

n1

; : : : ; '

nm

n

]

1

: : :

n

'

1

: : : '

m

'

So the rule is applicable if, for all 1 � i � n, �; '

i1

; : : : ; '

im

i

`

i

and, for all 1 � i � m, � ` '

i

;

in which case we deduce � ` ', the formulae in � being carried around as unused assumptions.

With a little shu�ing of the conseqences it is easy to see that our de�nition of admissibility

is now the appropriate one. We remark here that it would be interesting to consider notions

of admissibility for the more general higher-order rules of Schroeder-Heister [13]. However, the

(second-order) rules we consider include all the natural deduction rules in common usage.

One serious defect in our notion of rule is that each rule is considered only with respect

to �xed formulae. Usually rules are schematic. The deduction theorem would normally be

considered as just one rule in the shape of (4) schematic over ' and . One would then prefer

the following translation (which we henceforth call DT):

8' :o: 8 :o: (true(') � true()) � true('))

The problem with this approach is that, in order to make sense of a general notion of schematic

rule, we require some theory of propositional connectives in L. Similarly, for DT to be well

332

T

m

= fog

P

m

= ftrue :hoig

�

m

= f): o! o! o; a : o; b : og

A

m

= f8' :o: 8 :o: true(')) ');

8' :o: 8 :o: 8� :o: true((')) �)) ('))) ') �);

8' :o: 8 :o: true(')) � true(') � true()g

A

0

m

= A

m

[f((true(a) � true(b)) � true(a)) � true(a)g

Figure 8: Presentations of propositional minimal implicational logic.

formed, we require a consant): o ! o ! o in �. Further, there would have to be extra

conditions on the translation (�)

�

ensuring preservation of connectives and compositionality.

These are perfectly reasonable requirements (see �

A

for example), but would take us away from

the simple-minded notion of logic of section 4. However, when possible, we shall consider DT

in the examples that follow.

A �rst and simple connection between the adequacy of rules and the theoremhood of their

meta-logical translations is given by the proposition below. Remember that (�;A) is assumed

to give an adequate encoding of (L;`).

Lemma 6.1 For all sequents, S, S is �-valid if and only if true(�

�

) `

(�;A)

S

�

.

Proof. A sequent, S = ('

1

; : : : ; '

m

; '), is �-valid if and only if �; '

1

; : : : ; '

m

` ' if and only if

(by adequacy) true(�

�

); true('

�

1

); : : : ; true('

�

n

) `

(�;A)

true('

�

) if and only if true(�

�

) `

(�;A)

S

�

.

2

Proposition 6.2 For all rules R, if `

(�;A)

R

�

then R is admissible.

Proof. Suppose `

(�;A)

S

�

1

� : : : � S

�

n

� S

�

. Take an arbitrary � such that, for all i

(1 � i � n), S

i

is �-valid. We must show that S is �-valid. Now, by the lemma, for all i

(1 � i � n), true(�

�

) `

(�;A)

S

�

i

. So clearly true(�

�

) `

(�;A)

S

�

. But then, again by the lemma,

S is �-valid as required. 2

In [6] it is noted that the meta-logic has no facility for induction, so there is no general

way of proving the admissibility of inference rules. However, we are only considering instances

of rules rather than quanti�ed schematic rules, so induction can play no part. Nevertheless,

as we prove below, the converse of Proposition 6.2 still fails: in general there are admissible

rules R such that 6`

(�;A)

R

�

. It is therefore natural to consider extensions of A with unprovable

translations of admissible rules. De�ne Adm

`

= fR

�

j R is an admissible ruleg. Let R be a

subset of Adm

`

. We say that (�;A) is safe for R if (�;A [R) is adequate. Given that (�;A)

is adequate and, for each R

�

2 R, R is admissible, it might be imagined that (�;A) is always

safe for R. However, this is not the case. It is possible that the addition of the translation of

an admissible rule to an adequate signature can result in the loss of adequacy! We now develop

an example to show all this.

We �rst show that the presentation, (T

m

;P

m

;�

m

;A

0

m

), in Figure 8 gives an adequate presen-

tation of minimal implicational logic over two propositional constants, (L

m

;`

m

). The formulae,

', in L

m

are given by the grammar:

' ::= a j b j ')

333

The consequence relation, `

m

, is just intuitionistic entailment over L

m

.

The mapping, (�)

�

, from formulae to long-�� normal forms of type o is evident (again it is

the identity map on notation so we omit the

�

appendage). Bijectivity is proved by an easy

induction on the structure of long-�� normal forms. Similarly, there is an evident mapping from

proofs in the usual Hilbert system for `

m

(see, for example, [7, page 193]) of '

1

; : : : ; '

n

` ' to

proofs of true('

1

); : : : ; true('

n

) `

(�

m

;A

m

)

true('), so the fullness of (�

m

;A

m

) is easy to establish.

The fullness of (�

m

;A

0

m

) follows (as A

m

� A

0

m

).

To prove faithfulness we construct a suitable (�

m

;A

0

m

)-model. Although such a model could

be constructed out of Kripke models of `

m

, we construct instead a model of the syntactic kind

alluded to in the discussion at the end of section 5. The model is de�ned over the discrete

partial order (W

m

;=) where W

m

= Theories

`

m

. The type structure is the same at each world,

and is given by the extensional collapse of the closed terms of �

m

. Thus the interpretation of

A is the quotient of fM j�

�

m

M :Ag by an equivalence relation �

A

, where �

A

is inductively

de�ned by setting �

o

to =

��

and de�ning:

M �

A!B

M

0

i� for all N , N

0

, if N �

A

N

0

then M(N) �

B

M

0

(N

0

)

It is easy to show (by induction on types) that �

A

is a partial equivalence relation. It is also

easy to see that c �

A

c for the three constants in �

m

, as they are at worst �rst-order. Now the

re
exivity of �

A

, for all A, follows from the well-known \Basic Lemma" of logical relations (see

[9, x3]).

The entire �

m

-structure is de�ned as follows.

[[A]]

T

= fM j�

�

m

M :Ag= �

A

[[true]]

T

([M]) i� ��(M) = '

�

for some ' 2 T

[[c]]

T

= [c]

�

AB

T

([M]; [N]) = [M(N)]

K

AB

T

= [�x :A: �y :B: x]

S

ABC

T

= [�x :A! B ! C: �y :A! B: �z :A: x(z)(y(z))]

There is no need to specify i

A

TT

0

as the partial order is discrete, so i

A

TT

0

is only de�ned for T = T

0

in which case it must be the identity. Of the various conditions that have to be satis�ed for

(W

m

;=) to be a �

m

-structure, the most interesting is extensionality. However, this is easily

shown by induction on the structure of types. The other conditions are trivially veri�ed.

It is now possible to prove the adequacy of (�

m

;A

0

m

).

Proposition 6.3 (W

m

;=) is a (�

m

;A

0

m

)-model.

Proof. We must show that, for all � 2 A

0

m

, (W

Q

;�

Q

) j= �.

The three axioms in A

m

are all validated easily. We consider only the third:

8' :o: 8 :o: true(')) � true(') � true()

Suppose we have T and � with �(')

T

= [M], �()

T

= [N] such that T j=

�

true(')) and

T j=

�

true('). But ��(M) and ��(N) must correspond to formulae of L

m

, ' and say (not to

be confused with the meta-variables). But then ') 2 T and ' 2 T , so by modus ponens

 2 T . Thus clearly T j=

�

true() as required.

334

For the fourth axiom:

((true(a) � true(b)) � true(a)) � true(a)

Suppose we have T such that T j= (true(a) � true(b)) � true(a). Now suppose for contradiction

that T 6j= true(a). Then, as the partial order is discrete, it is clear that T j= true(a) � true(b).

So T j= true(a), giving the desired contradiction. 2

In this case the property required by Proposition 5.2 is evident. Given T 2 Theories

`

m

, it is

immediate from the construction of the model that form(T) = T . So (�

m

;A

0

m

) is indeed faithful

and hence adequate. Note that we have also established the adequacy of (�

m

;A

m

).

We now address the issues raised above, providing a counterexample to the converse of

Proposition 6.2 and showing that the stated problem with safety does indeed arise. It is well-

known that `

m

satis�es the deduction theorem. So setting:

R = f(true(a) � true(b)) � true(a) b);

(true((a) b)) a) � true(a)) � true(((a) b)) a)) a)g

we have that R � Adm

`

m

. Either of the meta-formulae in R provides a counterexample to the

converse of Proposition 6.2. We just show one case.

Proposition 6.4 6`

(�

m

;A

0

m

)

(true(a) � true(b)) � true(a) b).

Proof. By soundness of the meta-logic it is enough to �nd a T such that T 6j= (true(a) �

true(b)) � true(a) b) in (W

m

;=). De�ne T = Th

`

m

(;). Then clearly T j= true(') if and only

if ' is a theorem of minimal logic. Thus T 6j= true(a) so, as the partial order is discrete, T j=

true(a) � true(b). But also T 6j= true(a) b), so indeed T 6j= (true(a) � true(b)) � true(a) b).

2

The above proposition was also observed by Randy Pollack who proved it syntactically.

1

The

problem with safety is illustrated by the fact that (�

m

;A

0

m

[R) is not adequate (hence, inciden-

tally, neither is (�

m

;A

0

m

[fDTg)). It is easy to show that `

(�

m

;A

0

m

[R)

true(((a) b)) a)) a),

but it is well-known that 6`

m

((a) b)) a)) a. Therefore (�

m

;A

0

m

), though adequate, is not

safe for R above.

In the above example, the source of the problem with safety is the axiom:

((true(a) � true(b)) � true(a)) � true(a) (5)

This is redundant: (�

m

;A

m

) (which does not contain the axiom) is also adequate. Intuitively,

(5) gives meta-implication an aspect of classical behaviour (it is an instance of Peirce's Law).

(�

m

;A

0

m

) is adequate as there is no need for object-level implication to behave in the same way

as meta-implication. However, when R is added the two implications are forced to behave alike

in two critical cases, and thus object implication inherits unwanted classical properties.

In view of the problem with safety, it is natural to consider conditions under which (�;A) is

safe for an arbitrary R � Adm

`

. Clearly, this is so if and only if (�;A) is safe for Adm

`

itself.

A semantic condition for (�;A) to be safe for Adm

`

is given by Corollary 6.7 below.

Lemma 6.5 If (W;�) is a �-structure with form(W) � Theories

`

such that, for all T �

form(w), there exists w

0

� w with form(w

0

) = T then, for all sequents S, for all w 2 W ,

w j= S

�

if and only if S is form(w)-valid.

1

Private communication.

335

Proof. Let (W;�) be any �-structure satisfying the stated condition. Take any sequent

S = ('

1

; : : : ; '

m

; ') and any w 2W .

Suppose w j= S

�

, ie. w j= true('

�

1

) � : : : � true('

�

m

) � true('

�

). Let w

0

� w be such that

form(w

0

) = Th

`

(form(w) [f'

1

; : : : ; '

m

g) (such a w

0

is guaranteed to exist by the condition

on (W;�)). Then w

0

j= true('

�

i

) (1 � i � m), so w

0

j= true('

�

). But then ' 2 form(w

0

) so

form(w); '

1

; : : : ; '

m

` ' (by required property of w

0

). Thus indeed S is form(w)-valid.

Conversely, suppose S is form(w)-valid, ie. form(w); '

1

; : : : ; '

m

` '. Now suppose w

0

� w

is such that w

0

j= true('

�

i

) (1 � i � m). Then form(w) [f'

1

; : : : ; '

m

g � form(w

0

). But

form(w

0

) 2 Theories

`

(by the condition on (W;�)), so ' 2 form(w

0

). Thus w

0

j= true('

�

).

This shows that w j= true('

�

1

) � : : : � true('

�

m

) � true('

�

) as required. 2

Proposition 6.6 If (W;�) is a �-structure with form(W) = Theories

`

such that, for all

T � form(w), there exists w

0

� w with form(w

0

) = T then for all rules, R, (W;�) j= R

�

if and only if R is admissible.

Proof. Let (W;�) be any �-structure satisfying the stated condition. Let R be any rule of

the general form (3).

Suppose (W;�) j= R

�

, ie., for all w 2W , w j= S

�

1

� : : : � S

�

n

� S

�

. Suppose further that all

S

i

(1 � i � n) are �-valid. Then clearly all the S

i

are Th

`

(�)-valid. Let w be any world such

that form(w) = Th

`

(�) (the existence of w is guaranteed by the condition on (W;�)). Then,

by the lemma above, w j= S

�

i

(1 � i � n) so clearly w j= S

�

. But then, again by the lemma, S

is Th

`

(�)-valid and hence �-valid. Thus R is indeed admissible.

Conversely, suppose R is admissible. Take any w 2W such that w j= S

�

i

(1 � i � n). Then,

by the lemma, all S

i

are form(w)-valid. So, by admissibility, S is form(w)-valid. But then,

again by the lemma, w j= S

�

. So, for all w 2W , w j= S

�

1

� : : : � S

�

n

� S

�

as required. 2

Corollary 6.7 If (W;�) is a (�;A)-model with form(W) = Theories

`

such that, for all T �

form(w), there exists w

0

� w with form(w

0

) = T then (�;A) is safe for Adm

`

.

Proof. By the proposition (W;�) is a (�;A[Adm

`

)-model. So by Proposition 5.2, (�;A [

Adm

`

) is faithful and hence adequate. 2

Note that by propositions 5.1 and 5.2 we can always �nd a (�;A)-model with form(W) =

Theories

`

. Thus the only extra condition to satisfy is that on the relationship between � and

�. Intuitively, the only property of a world, w, in which we are interested is the contents of

form(w). The condition establishes that form is a \zig-zag morphism" (see [17]) from (W;�)

to the lattice (Theories

`

;�).

We can now show that (�

m

;A

m

) is safe for Adm

`

m

and thus, unsurprisingly, better be-

haved than (�

m

;A

0

m

). To this end we construct a (�

m

;A

m

)-model satisfying the condition

of Corollary 6.7. This time the model is built over the partial order (W

m

;�) (where again

W

m

= Theories

`

m

). All the components of the model are exactly as in the discrete case above.

This time it is necessary to de�ne i

A

TT

0

(for T � T

0

), but this is simply:

i

A

TT

0

([M]) = [M]

It is readily checked that the resulting structure is a a (�

m

;A

m

)-model (the proof goes through

exactly as before). It is also easy to see that the conditions of Corollary 6.7 are satis�ed as form

is the identity morphism from the lattice (Theories

`

m

;�) to itself. So indeed (�

m

;A

m

) is safe

for Adm

`

m

.

336

To investigate the applicability of the theory developed in this section we return to the

encoding (�

A

;A

Q

) of Robinson's Q given in the previous section. First we show that there are

admissible rules not provable in (�

A

;A

Q

). It is well-known that the deduction theorem holds

for classical logic, and hence for `

Q

(remember we are only considering consequence between

sentences). Thus every rule of the form (4) is admissible. Let G be any sentence in the language

of arithmetic for which neither `

Q

G nor `

Q

:G (G�odel's Theorem guarantees the existence of

such a G). Now (true(G) � true(: 0 = 1)) � true(G) : 0 = 1) is clearly the translation of a

rule of the form (4) and thus of an admissible rule. However, 6`

(�

A

;A

Q

)

(true(G) � true(: 0 =

1)) � true(G) : 0 = 1) (and thus 6`

(�

A

;A

Q

)

DT). This fact can be proved by considering

a (�

A

;A

Q

)-model, (W

Q

;=), de�ned as (W

Q

;�

Q

) but with the discrete partial order. We do

not go into details, but it is easy to prove that in this model that the world Mod

Q

refutes the

sentence. Proposition 6.11 will show that this fact can not be proved using (W

Q

;�

Q

).

As there are admissible rules which are unprovable in (�

A

;A

Q

), we would like to know at

least that (�

A

;A

Q

) is safe for Adm

`

Q

. Unfortunately, (W

Q

;�

Q

) fails the condition of Corol-

lary 6.7. To see this, consider the world (where N is the standard model of arithmetic):

S

y

= fM j M is model of Q not elementary equivalent to Ng

Lemma 6.8 `

Q

' if and only if for all M2 S

y

,M j= '.

Proof. The left-to-right implication is by classical soundness. For the converse suppose the

contrary. Then there is a ' such that, for all M 2 S

y

, M j= ', but 6`

Q

'. By classical

completeness there exists a modelM of Q such that M j= :'. This model cannot be in S

y

, so

it must be elementary equivalent to N. It is now clear that for any true sentence of arithmetic,

for all modelsM of Q,M j= :') . Therefore, again by completeness, `

Q

:') . But then

Q [f:'g gives a �nite axiomatisation of the true sentences of arithmetic, which is impossible.

2

So Th

`

Q

(;) = Th

j=

(S

y

) = form(S

y

) (the �rst equality is by the lemma, the second is by

Lemma 5.5). Now let T

N

be the set of all true sentences of arithmetic. Clearly T

N

� form(S

y

).

However, there can be no S with S

y

�

Q

S such that form(S) = T

N

. For such an S must be

non-empty (as form(;) = L

A

), but any M 2 S must satisfy the negation of some sentence in

T

N

, as it can not be elementary equivalent to N. So the condition of Corollary 6.7 does indeed

fail.

One way of showing that (�

A

;A

Q

) is safe for Adm

`

Q

is to modify the de�nition of (W

Q

;�

Q

).

Rede�ne:

W

Q

= fMods

j=

(T) j T 2 Theories

`

Q

g

The rest of the model is constructed as before. This time Corollary 6.7 does apply as form is

now an isomorphism from (W

Q

;�

Q

) to (Theories

`

Q

;�). A di�erent and more detailed proof

will be given below, exploiting properties of the implication connective.

When a logic has implication and satis�es both modus ponens and the deduction theorem,

it turns out that all admissible rules are reducible to instances of these two cases. Suppose then

that (L;`) is a logic satisfying these conditions. Thus the following are both subsets of Adm

`

:

MP

S

= ftrue(')) � true(') � true() j '; 2 Lg

DT

S

= f(true(') � true()) � true(')) j '; 2 Lg

Again we assume that (�;A) is an adequate encoding of the logic.

337

Proposition 6.9 If, for all � 2 MP

S

[DT

S

, `

(�;A)

� then `

(�;A)

R

�

if and only if R is

admissible.

Proof. The `only if' direction is by Proposition 6.2. For the `if' direction we �rst de�ne some

notation. Given a sequent, S = ('

1

; : : : ; '

m

; ') de�ne:

�(S) = '

1

) : : :) '

m

) '

Now suppose R, of the general form (3), is admissible. De�ning � = f�(S

1

); : : : ; �(S

n

)g, we

have, for all 1 � i � n, that (by m

i

applications of modus ponens) �; '

i1

; : : : ; '

im

i

`

i

(where S

i

= ('

i1

; : : : ; '

im

i

;

i

)). In short, all the S

i

are �-valid. So, by the admissibility of

R, �; '

1

; : : : ; '

m

` ' (where S = ('

1

; : : : ; '

m

; ')). Now, by m applications of the deduction

theorem, � ` '

1

) : : :) '

m

) ', ie. �(S

1

); : : : ; �(S

n

) ` �(S). Hence, by adequacy,

true(�(S

1

)); : : : ; true(�(S

n

)) `

(�;A)

true(�(S)). But now, using DT

S

for the left-hand side and

MP

S

for the right, it is easy to see that S

�

1

; : : : ;S

�

n

`

(�;A)

S

�

. So clearly `

(�;A)

R

�

. 2

Corollary 6.10 (�;A) is safe for Adm

`

if and only if it is safe for MP

S

[DT

S

.

Proof. The left-to-right implication is obvious. Suppose then that (�;A) is safe forMP

S

[DT

S

.

The result follows immediately from the above proposition applied to (�;A[MP

S

[DT

S

). 2

We can now give the promised proof that (�

A

;A

Q

) is safe for Adm

`

Q

. (�

A

;A

Q

) is a logic

with implication satisfying both modus ponens and the deduction theorem. As A

Q

contains the

following axiom:

8' :o: 8 :o: true(')) � true(') � true()

it is clear that, for all � 2MP

S

, `

(�

A

;A

Q

)

�. Thus, by Corollary 6.10, it is enough to show that

(�

A

;A

Q

) is safe for DT

S

. In fact we will show that (�

A

;A

Q

[fDTg) is adequate.

Proposition 6.11 (W

Q

;�

Q

) is a (�

A

;A

Q

[fDTg)-model.

Proof. We need only show that, for all S 2 W

Q

, S j= DT . Suppose then that we have a

world S and an environment � with �(')

S

= fa

M

g

M2S

and �()

S

= fb

M

g

M2S

(both these in

[[o]]

S

) such that S j=

�

true(') � true(). Let M be any element of S. Clearly S �

Q

fMg so if

fMg j=

�

true(') then fMg j=

�

true(). Thus a

M

= � or b

M

= tt. But then, by Lemma 5.4,

[[')]]

�

S

= fttg

M2S

. So S j=

�

true(')) as required. 2

We have already shown that (W

Q

;�

Q

) has the property required by Proposition 5.2, so the

faithfulness (and hence adequacy) of (�

A

;A

Q

[fDTg) is immediate.

It is easy to show that Proposition 6.11 implies, by the soundness of the meta-logic together

with Proposition 6.9, that (W

Q

;�

Q

) j= R

�

if and only if R is admissible. As we have shown

that (W

Q

;�

Q

) fails the condition of Proposition 6.6, the condition is seen to be su�cient but

not necessary.

It is also clear, using Proposition 6.9 and the established adequacy result, that:

`

(�

A

;A

Q

[fDTg)

R

�

i� R is admissible

So this presentation proves all admissible rules.

The rather simple connection of Proposition 6.9, showing that the provable admissibility

of any inference rule is reducible to modus ponens and the deduction theorem, is a testimony

to the (over-)simplicity of our notion of inference rule. With a reasonable notion of schematic

inference rule the situation is likely to be a good deal more interesting. Still, there are enough

338

surprises even with the simpler notion (such as the potential problem with safety) to justify our

investigation at this level.

The most natural way of extending this work to deal with more complex notions of rule

would be to consider �rst more elaborate notions of logic. One possible development would

be to include language structure in the de�nition of logic, allowing for both connectives and

quanti�ers. Another extension would be to consider logics with other notions of consequence

(such as multiple judgements). At the logical level these notions are already established (see [5]

for example). However, such ideas have yet to be approached using the semantic methods of

this paper.

At least, whatever extensions to the notion of logic are considered, the semantics of section

3 is already in place to be applied. However, whether or not the fruitful connections of sections

5 and 6 will generalise remains to be seen.

Acknowledgements

I gratefully acknowledge the support of my supervisors, Gordon Plotkin and David Pym.

References

[1] A. Avron, F. Honsell, and I. Mason. Using typed lambda calculus to implement formal sys-

tems on a machine. LFCS Report Series ECS-LFCS-87-31, Laboratory for the Foundations

of Computer Science, Computer Science Department, University of Edinburgh, 1987.

[2] J. Barwise. Axioms for abstract model theory. Annals of Mathematical Logic, 7, 1974.

[3] N. G. de Bruijn. A survey of the project automath. In J. P. Seldin and J. R. Hindley,

editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism,

pages 589 { 606. Academic Press, 1980.

[4] A. Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic Program-

ming Language. PhD theses, University of Pennsylvania, 1989.

[5] P. Gardner. Representing Logics in Type Theory. PhD Thesis, Department of Computer

Science, University of Edinburgh, 1992.

[6] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. In Proceedings of

2nd Annual Symposium on Logic in Computer Science, pages 194{204, 1987.

[7] J. R. Hindley and J. P. Seldin. Introduction to Combinators and the �-Calculus. London

Mathematical Society, Student Texts 1. Cambridge University Press, 1986.

[8] G. Huet. A uni�cation algorithm for typed �-calculus. Theoretical Computer Science, 1:27

{ 57, 1975.

[9] J. C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume II, pages 365 { 458. Elsevier Science

Publishers, 1990.

[10] J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus. Journal of

Pure and Applied Logic, 51:99{124, 1991.

339

[11] B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's Type Theory.

Oxford University Press, 1990.

[12] L. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning,

5:363{396, 1989.

[13] P. Schroeder-Heister. A natural extension of natural deduction. Journal of Symbolic Logic,

49:1284{1299, 1984.

[14] D. S. Scott. On engendering an illusion of understanding. Journal of Philosophy, 68:787{

807, 1971.

[15] A. Tarski. Logic, Semantics, Metamathematics. Oxford University Press, 1956.

[16] A.S. Troelstra. Metamathematical investigations of intuitionistic arithmetic and analysis.

Lecture notes in mathematics, 344, 1973.

[17] J. van Bentham. Correspondence theory. In D. Gabbay and F. Guenther, editors, Handbook

of Philosophical Logic, volume II, pages 167 { 47. D. Reidel Publishing Company, 1984.

340

A Normalization Proof for an Impredicative Type System with

Large Elimination over Integers

Benjamin Werner

�

INRIA { Rocquencourt

August 1992

Abstract

We prove strong normalization for a type system that includes system F, dependent

types, primitive integers and the ability to de�ne types by primitive recursion over integers.

We give some applications motivating this feature.

Introduction

The aim of this note is to show how one can prove strong normalization for a type system

in which types can be de�ned by case and by recursion over some inductive structure (here

integers), thus setting the bases for a consistency proof of systems like the one implemented in

Coq [4]. Let us sketch the technical motivations for these systems.

Need for inductive types

In [3], Coquand and Paulin give a uniform presentation of inductive de�nitions, which can

be added to the Calculus of Constructions (or nearly any other GTS). To simplify, one may

say that this de�nition scheme generalizes the primitive integers of G�odel's system T [10, 9].

It is well-known that in an impredicative framework, as is the Calculus of Constructions, in-

ductive structures (integers, lists, sums, products) may be de�ned internally, using encodings

like Church's integers [8, 9, 12]. However, Coquand and Paulin listed some drawbacks of this

technique, thus motivating the introduction of their extension; essentially:

� E�ciency: for Church's integers, the predecessor cannot be calculated in constant time.

� The induction scheme (in the case of integers, Peano's axiom) cannot be proven internaly.

Moreover the induction principle does not correspond to recursion anymore.

� It is impossible to prove 0 6= 1 in the system.

In what follows, we are mainly focusing on the third point. Let us try to explicit it: proving

0 6= 1 means precisely exhibiting a predicate P over natural numbers, such that one can prove

P (0) and the negation of P (1). In the pure Calculus of Constructions there is no hope to

de�ne such a predicate, because ultimately, all we can do is quantify over all predicate variables

�

benjamin.werner@inria.fr

341

(8� : Nat!Prop). The right and elegant way to formalize this argument, is to use the erasure

map which transforms any type (resp. proof) of the Calculus of Constructions into a type of

F

!

(resp. a term of F

!

inhabiting the corresponding type). Suppose we had a closed proof p of

the proposition

0 6= 1 � (8P :Nat!Prop:(P 0)! (P S(0)))!(8Q:Prop:Q)

then by mapping p into F! we would get a closed term inhabiting the type:(8� : �:�!�)!(8� :

�:�) which, we know, is impossible, as there is no closed term of type 8� : �:�.

Large elimination schemes

So it is the mechanism for de�ning dependent types in CoC which appears to be unsatisfactory.

Here we want to enhance it, at least in the case of inductive structures like natural numbers.

Coquand and Paulin suggest to introduce a second elimination scheme for each inductive struc-

ture, which allows to build types through structural recursion over, say, a natural number. Let

us illustrate this point. In system T, there exist an elimination scheme rec, with the following

corresponding reduction rules:

(rec 0 t

0

t

S

) � t

0

(rec (S t) t

0

s

S

) � (t

S

t (rec t t

0

t

S

))

The natural type of rec in the Calculus of Constructions is precisely Peano's axiom:

8n:Nat:8P :Nat!Prop:(P 0)!(8m:Nat:(P m)!(P (S m)))!(P n)

Coquand and Paulin's suggestion can be understood as the introduction of a second elimi-

nation scheme Rec, with the same reduction rules, but of the following type:

8n:Nat:8T :Nat!Type:(T 0)!(8m:Nat:(T m)!(T (S m)))!(T n)

This means we can de�ne a type (i.e. an object of type Prop) recursively over an integer.

For instance, a predicate trivially veri�ed by 0 and not veri�ed by (S 0) could be:

�n:Nat:(Rec n �n:Nat:Prop 8P :Prop:(P!P) �m:Nat:�q:Prop:8P :Prop:P)

We will call Rec the Large elimination scheme, by opposition to the usual small elimination

scheme rec

1

.

Of course, this is generalized to all inductive types

2

. The question we try to address here, is

the normalization, and hence the consistency, of type systems including such features. In what

follows we restrict ourselves to the simplest possible system including such a feature combined

with polymorphism.

1 The system

Therefore, the calculus de�ned below can be seen as the system F enriched by:

� natural numbers "�a la system T"

� dependent types

� the essential novelty which is the Rec operator shown above.

In other words, it is the type system �P2 with primitive natural numbers and the two elimination

schemes. Note that dependent types are not strictly speaking necessary for the de�nition of the

system, but without them, types de�ned using Rec would have no interesting inhabitants.

1

This terminology is, to our knowledge, due to Thorsten Altenkirch.

2

Actually all inductive types with only monomorphic constructors, also called \small" inductive types.

342

We should also mention that Jan Smith proposed to add large elimination over integers to

Martin-L�of's Type Theory. Actually, the system he describes in [14] is quite similar to the one

given below, so the idea of our normalization proof should also apply to his extension.

The syntax

In order to simplify as much as possible the normalization proof, we chose a little more

complicated syntax than the usual GTS style presentations [7] (and also than the one of the

few examples above). We introduce a syntactic distinction between the term variables and the

predicate variables. Moreover every predicate variable comes along with its arity or degree:

a variable of type Prop will be of degree 0, a variable of type Nat!Prop will be of degree

1, etc. Consequently the inference rules are more numerous and slightly redundant, but the

whole construction of interpretating the predicates in terms on reducibility candidates is more

straightforward.

We consider as given a set V t of term variables whose elements will generally be written as

x, and, for any natural number i, a set V T

i

of predicate variables of degree i which will denote

the symbol �

i

. All these sets are supposed distinct and the equality over them decidable. the

symbol � will be used to designate any element of V T which is de�ned as

S

i2N

V T

i

.

We now de�ne the set of proof-terms (noted as t), the sets of predicates of degree i (written

T

i

) and of kinds of degree i (written K

i

):

t ::= x j �

T

0

x:t j (t t) j �

K

i

�

i

:t j (t T

i

) j 0 j Sftg j recft; t; tg

T

0

::= �

0

j Nat j (x : T

0

)T

0

j (�

i

: K

i

)T

0

j (T

1

t) j Recft; T

0

; �

0

:T

1

g

T

i+1

::= �

i+1

j �

T

0

x:T

i

j (T

i+2

t)

K

0

::= Prop

K

i+1

::= (x : T

0

)K

i

Furthermore we will call objects the elements of the union of the sets de�ned above. The

substitution is de�ned for all kind of variables in the usual way and noted t[x n t

0

] (or t[� n T],

etc). A type is a predicate of degree 0. We will not deal with alpha-conversion.

De�nition We de�ne the ��-reduction by:

(�

t1

) (�

T

x:t

1

t

2

) 7! t

1

[x n t

2

]

(�

t2

) (�

K

�:t T) 7! t[� n T]

(�

T

) (�

T

0

x:T t) 7! T [x n t]

(�

t0

) recf0; t

0

; t

S

g 7! t

0

(�

tS

) recfSftg; t

0

; t

S

g 7! (t

S

t recft; t

0

; t

S

g)

(�

T0

) Recf0; T

0

; �:T

1

g 7! T

0

(�

TS

) RecfSftg; T

0

; �:T

1

g 7! (T

1

[� n Recft; T

0

; �:T

1

g] t)

343

We will write M � M

0

to say that M rewrites to M

0

by ��-reduction of a subterm, M �

i

M

0

designing a sequence of i reductions. The transitive-re
exive closure of � will denote the symbol

�

�

and the transitive-symmetrical-re
exive closure will be designed by the in�x symbol =

��

.

Remark The reductions preserve the syntactic class. So we can speak of the arity of an =

��

equivalence class.

Lemma 1 The reduction is Church-Rosser in the set of objects.

Proof By the usual Tait{Martin-L�of method.

De�nition A context (generally written �) is a list of pairs composed either by a term variable

and a type (x; T

0

) or a predicate variable and a kind of the same degree (�

i

;K

i

). The empty

context is written [].

Type system: speci�c rules

(Nat) [] ` Nat:Prop (zero) [] ` 0:Nat (successor)

� ` t:Nat

� ` Sftg:Nat

(rec)

� ` t:Nat � ` T :Nat!Prop � ` t

0

:(T 0) � ` t

S

:(n:Nat)(T n)!(T Sfng)

� ` recft; t

0

; t

S

g:(T t)

(Rec)

� ` t:Nat � ` T

0

:Prop �::(�

0

;Prop) ` T

S

:Nat!Prop

� ` Recft; T

0

; �

0

:T

S

g:Prop

GTS Rules (�P

2

)

(Prop) [] ` Prop:Type (Kind)

� :: (x; T) ` K : Type

� ` (x : T)K : Type

(Prod)

� ` T

0

:Prop �::(x; T

0

) ` T

0

0

:Prop

� ` (x:T

0

)T

0

0

:Prop

� ` K

i

:Type �::(�

i

;K

i

) ` T

0

:Prop

� ` (�

i

:K

i

)T

0

:Prop

� ` T

0

:Prop �::(x; T

0

) ` K

i

:Type

� ` (x:T

0

)K

i

:Type

(Abs)

� ` (x:T

0

)T

0

0

:Prop �::(x; T

0

) ` t:T

0

0

� ` �

T

0

x:t : (x:T

0

)T

0

0

� ` (x:T

0

)K

i

:Type �::(x; T

0

) ` T

i

:K

i

� ` �

T

0

x:T

i

: (x:T

0

)K

i

344

� ` (�

i

:K

i

)T

0

:Prop �::(�

i

;K

i

) ` t:T

0

� ` �

K

i

�

i

:t : (�

i

:K

i

)T

0

(App)

� ` t:(x : T

0

1

)T

1

� ` t

0

:T

0

1

� ` (t t

0

) : T

1

[x n t

0

]

� ` t:(�

i

:K

i

)T

0

� ` T

i

:K

i

� ` (t T

i

):T

0

[�

i

n T

i

]

� ` T

i+1

:(x : T

0

)K

i

� ` t:T

0

� ` (T

i+1

t):K

i

[x n t]

(redT)

� ` T :Prop T =

��

T

0

� ` T

0

:Prop � ` t:T

� ` t:T

0

(redK)

� ` K :Type K =

��

K

0

� ` K

0

:Type � ` T :K

� ` T :K

0

(weak)

� ` V :S � ` u:U

�::(a; V) ` u:U

(a; V; S) 2 (V t� T

0

� fPropg) [(V T

i

�K

i

� fTypeg)

and (u;U) 2 (t� T

0

) [(T

i

�K

i

)

(var)

� ` u:U (a; V) in �

� ` a:V

(u;U) 2 (t� T

0

) [(T

i

�K

i

)

and (a; V) 2 (V t� T

0

) [(V T

i

�K

i

)

2 Pure proof-terms

We de�ne the term algebra � by:

u ::= x j (u u) j �x:u j 0 j Sfug j recfu; u; ug

We will call pure terms the elements of �. The symbols u, v, u

0

etc will be used to denote

pure terms.

We de�ne the following map from proof-terms to �:

dxe � x

d�

T

x:te � �x:dte

dt t

0

e � (dte dt

0

e)

d�

K

�:te � dte

dt T e � dte

d0e � 0

dSftge � Sfdteg

drecft; t

0

; t

s

ge � recfdte; dt

0

e; dt

S

eg

We may easily map the reduction de�ned over proof-terms to reductions over pure terms.

We will call N the set of strongly normalizable pure terms.

Lemma 2 The ��-reduction is Church-Rosser in the set of pure terms.

Proof Tait{Martin-L�of method again; it is the usual proof for system T.

The reader familiar with normalization proofs will understand that we will start by proving

strong normalization for pure terms. Hence, the proof below has a lot of similarities with the

ones found in [11, 7]. There is however a major di�erence due to the presence of the large

345

elimination scheme: we cannot get rid of the dependent types in the proof. Actually the main

originality of our proof is the way we interpret of the types de�ned by recursion over integers. On

the other hand, we should also say that it is perfectly possible to do a similar proof for dependent

types without �rst proving strong normalization for pure terms; for example [2] could very well

be adapted for our type system. So the choice between typed or untyped reducibility candidates

is still a matter of convenience and taste.

De�nition Pure terms of the following forms are said to be neutral: x, (u

1

u

2

) and recfu;u

0

; u

S

g.

De�nition A predicate interpretation C of degree 0 is a set of pure terms. A predicate interpre-

tation of degree i+ 1 is a total function f mapping any pure term to a predicate interpretation

of degree i.

De�nition An interpretation I is a pair composed of:

� A total function mapping a term to every term variable.

� A total function mapping a predicate interpretation of degree i to every predicate variables

of degree i, for any i.

If I = (f; g) we will write I(x) (resp. I(�)) for f(x) (resp. g(�)). The �rst component of

any interpretation straightforwardly de�nes a substitution over the free variables of any pure

term. If u is a pure term, we will write u[I] for the substituted term.

We will write I;x u (resp. I;� C) for the interpretation which has the same values

than I on all points but x for which it will have value u (resp. � for which it will have value

C). Note that all variables are substituted in parallel : I;x u; y u

0

= I; y u

0

;x u,

provided that x 6= y. A simple but essential property is: u[x n u

0

][I] = u[I;x u

0

[I]]. Note

also that dt[�n T]e[I] = dte[I] = dte[I;� C.

De�nition A reducibility candidate of degree 0 is a set of pure terms such that:

� C is closed under ��-reduction.

� Every element of C is strongly normalizable.

� let u be a neutral pure term. If for every term u

0

such that u �

1

u

0

we have u

0

2C, then

u 2C. Note that a reducibility candidate of degree 0 is never empty, since it contains all

the term variables.

For n � 1, a reducibility candidate of degree n is a predicate interpretation f of degree n

such that for any pure term u, f(u) is a reducibility candidate of degree n � 1 such that if

u =

��

u

0

then f(u) = f(u

0

).

De�nition Let T be any predicate of any degree i. By structural induction over T we de�ne

jT j

I

for any interpretation I. If i = 0 then jT j

I

is a set of pure terms and a total function from

terms to some set otherwise.

� If T = �

i

, then jT j

I

� I(�

i

).

� If T = Nat, then then jT j

I

� N .

� If T = (x:T

0

)T

00

, then jT j

I

� fu;8u

0

2 jT

0

j

I

:(u u

0

) 2 jT

00

j

I;x u

0

g.

346

� If T = (�

i

: K

i

)T

0

, then jT j

I

�

T

C

i

jT

0

j

I;�

i

 C

i

where the intersection ranges over all

reducibility candidates (not all interpretations) of degree i.

� If T = (T

i+1

t), then jT j

I

� jT

i+1

j

I

(dte[I]).

� If T = �

T

0

x:T

0

, then jT j

I

is the function that to any term u associates jT

0

j

I;x u

.

� If T = Recft; T

0

; �

0

:T

1

g, then jT j

I

is de�ned by cases on the normalizability

3

of dte[I]:

{ If dte[I] admits no normal form, then jT j

I

� N .

{ If dte[I] (weakly) normalizes

4

to u

0

, we de�ne the set C(v;I; T

0

; T

1

; �

0

) by structural

recursion over the (normal) pure term v:

� C(0;I; T

0

; T

1

; �

0

) � jT

0

j

I

.

� C(Sfv

0

g;I; T

0

; T

1

; �

0

) � jT

1

j

I;�

0

 C(v

0

;I;T

0

;T

1

;�

0

)

(v

0

).

� C(v;I; T

0

; T

1

; �

0

) � N otherwise.

We then may de�ne jT j

I

� C(u

0

;I; T

0

; T

1

; �

0

).

Lemma 3 For any x, T , t and I, we have jT [x n t]j

I

= jT j

I;x dte[I]

.

Proof By straightforward structural induction over T :

� If T = (y:T

0

)T

00

with x 6= y and y not free in t, then T [x n t] = (y:T

0

[x n t])T

00

[x n t]. The

induction hypothesis applies for jT

0

[x n t]j

I

and jT

00

[x n t]j

I;y u

0

for any u

0

. The result

follows immediately.

� If T = (T

i+1

t

0

) then

jT [x n t]j

I

= j(T

i+1

[x n t] t

0

[x n t])j

I

which by induction hypothesis is equal to

jT

i+1

j

I;x dte[I]

(dt

0

e[I;x dte[I]]) = jT

i+1

j

I;x dte[I]

(dt

0

[x n t]e[I]):

The result follows.

� If T = �

T

0

y:T

0

with x 6= y and y not free in t, then jT [x n t]j

I

is the function that to u

0

associates jT

0

[x n t]j

I;y u

0

which is equal to

jT

0

j

I;y u

0

;x dte[I;y u

0

]

= jT

0

j

I;x dte[I];y u

0

:

� If T = Recft

0

; T

0

; �

0

:T

1

g then jT [x n t]j

I

is de�ned by cases over the normalizability of

dt

0

e[xndte][I] which is equal to dt

0

e[I;x dte[I]]. The result follows with straightforward

use of the induction hypothesis in the di�erent cases.

All other cases are immediate.

Lemma 4 For any T , �

i

, T

i

and I, we have jT [�

i

n T

i

]j

I

= jT j

I;�

i

 jT

i

j

I

.

3

This is obviously a classical resonning. It is possible to make this proof constructive, but this would imply to

de�ne jT j

I

provided some well-chosen conditions. We believe the classical proof is simpler and more enlighting.

4

We recall that the normal form is unique, as the reduction is Church-Rosser; note that in this proof we do

need CR for the pure terms, but not for the annotated proof terms.

347

Proof Again we proceed by simple structural induction over T . We only detail the Rec case;

all the other ones are straightforward.

If T = Recft; T

0

; �

0

:T

1

g, we have seen that dte[I] = dt[�

i

n T

i

]e = dte. The case where dte

admits no normal form is thus trivial. Now for the case where dte does admit a normal form,

we prove by induction over the (normal) pure term u that

C(u;I; T

0

[�

i

n T

i

]; T

1

[�

i

n T

i

]; �

0

) = C(u;I;�

i

 jT

i

j

I

; T

0

; T

1

; �

0

):

Again, we do not cope with �-conversion, thus admitting that �

0

is not free in T

1

.

� If u = 0,

C(0;I; T

0

[�

i

n T

i

]; T

1

[�

i

n T

i

]; �

0

) = jT

0

[�

i

n T

i

]j

I

which is equal to

jT

0

j

I;�

i

 jT

i

j

I

because of the (�rst) induction hypothesis and by de�nition equal to

C(0;I;�

i

 jT

i

j

I

; T

0

; T

1

; �

0

)

� If u = Sfu

0

g, the (second) induction states that

C(u

0

;I; T

0

[�

i

n T

i

]; T

1

[�

i

n T

i

]; �

0

) = C(u

0

;I;�

i

 jT

i

j

I

; T

0

; T

1

; �

0

)

By de�nition

C(Sfu

0

g;I; T

0

[�

i

n T

i

]; T

1

[�

i

n T

i

]; �

0

) = jT

1

[�

i

n T

i

]j

I;�

0

 C(u

0

;I;T

0

[�

i

nT

i

];T

1

[�

i

nT

i

];�

0

)

which, because of the equality above, is equal to

jT

1

[�

i

n T

i

]j

I;�

0

 C(u

0

;I;�

i

 jT

i

j

I

;T

0

;T

1

;�

0

)

= jT

1

j

I;�

0

 C(u

0

;I;�

i

 jT

i

j

I

;T

0

;T

1

;�

0

);�

i

 jT

i

j

I;�

0

 C(u

0

;I;�

i

 jT

i

j

I

;T

0

;T

1

;�

0

)

But as �

0

is not free in T

1

, this last term can be simpli�ed into:

jT

1

j

I;�

i

 jT

i

j

I

;�

0

 C(u

0

;I;�

i

 jT

i

j

I

;T

0

;T

1

;�

0

)

Which is precisely the de�nition of C(Sfu

0

g;I;�

i

 jT

i

j

I

; T

0

; T

1

; �

0

).

� The case where u neither reduces to 0 nor to Sfu

0

g is trivial.

De�nition An predicate interpretation f of degree i > 0 is said to be ��-invariant if for any

u and u

0

such that u =

��

u

0

, one has f(u) = f(u

0

). Furthermore if i > 1 then f(u) has to be

��-invariant also.

An interpretation I is said to be ��-invariant if and only if for any �

i+1

, I(�

i+1

) is ��-

invariant.

Lemma 5 Let I be a ��-invariant interpretation. Then the following holds:

� For any T of degree at least 1, jT j

I

is ��-invariant.

348

� Furthermore, for any T , x u and u

0

such that u =

��

u

0

, one has jT j

I;x u

= jT j

I;x u

0

.

Proof By structural induction over T .

� T = � is immediate.

� T = Nat is immediate.

� T = (y : T

0

)T

00

. The second induction hypothesis applies for T

0

and T

00

. Therefore

jT j

I;x v

= fu;8u

0

2 jT

0

j

I;x v

:(u u

0

) 2 jT

00

j

I;x v

g

= fu;8u

0

2 jT

0

j

I;x v

0

:(u u

0

) 2 jT

00

j

I;x v

0

g

= jT j

I;x v

0

:

� T = (�

i

: K

i

)T

0

. for any reducibility candidate Cof degree i, I;�

i

 C is ��-invariant

because Cis invariant if i > 0. Therefore, by induction hypothesis, jT

0

j

I;�

i

 C

is also

��-invariant. The result follows.

� T = (T

i+1

t). jT j

I;x u

= jT

i+1

j

I;x u

(dte[I;x u]) which is equal to jT j

I;x u

0

by the

induction hypothesis. Furthermore, if i > 0, jT j

I

is ��-invariant, because jT

�+1

j

I

is.

� T = �

T

0

x:T

0

is similar.

� T = Recft; T

0

; �

0

:T

1

g. Because of Church-Rosser for pure terms, dte[I;x v] has a

normal form if and only if dte[I;x v

0

] has. Furthermore if these normal forms exist,

they are equal. The result follows by considering the di�erent cases of the de�nition of

jT j

I

.

De�nition An interpretation I is said to be a candidate interpretation if for any �

i

, I(�

i

) is a

reducibility candidate of degree i.

Lemma 6 For any predicate T and any candidate interpretation I, jT j

I

is a reducibility can-

didate of the same degree than T .

Proof Structural induction over T again. Most of the cases re
ect what is done in other

proofs of the literature. Of course, we use the fact that the previous lemma applies, as I is

��-invariant.

� If T = �

i

. By de�nition: I is a candidate interpretation.

� If T = Nat. We have to prove that N is indeed a reducibility candidate. It is easy to see

that it is closed under ��-reduction and it is of course contained by itself. Also a term

that only reduces to strongly normalizable terms is itself strongly normalizable.

� If T = (x : T

0

)T

00

, then jT

0

j

I

and jT

00

j

I;x u

0

are reducibility candidates of degree 0 for any

pure term u

0

, by induction hypothesis. Let u be an element of jT j

I

and u

0

any element of

jT

0

j

I

. Then as (u u

0

) is strongly normalizable, so is u. Also if u � u

00

, then (u u

0

) � (u

00

u

0

);

thus (u

00

u

0

) is in jT

00

j

I;x u

0

and hence u

00

is in jT j.

Finally, given any neutral term u

0

that reduces only to elements of jT j, we may prove

by induction over the maximum number of reduction steps of u

0

that (u

0

u

0

) is indeed

element of jT

00

j

I;x u

0

. It is neutral and we show it only reduces to elements of jT

00

j

I;x u

0

:

349

{ (u

0

u

0

) � (u

0

0

u

0

) but then u

0

0

is element of jT j

I

and thus (u

0

0

u

0

) is element of

jT

00

j

I;x u

0

.

{ (u

0

u

0

) � (u

0

u

00

) but the maximum number of reduction steps inside of u

00

is

strictly less than in u

0

. So we can apply the induction hypothesis and jT

00

j

I;x u

00

=

jT

00

j

I;x; u

0

.

� For the case T = (�

i

: K

i

)T

0

, we have to prove that any intersection of reducibility

candidates (of degree 0) is still a reducibility candidate. This is done straightforwardly.

� The case T = (T

i+1

t) is a simple application of the induction hypothesis.

� If T = �

T

0

x:T

i

, the induction hypothesis says that for any term u jT

i

j

I;x u

is a reducibility

candidate of degree i. The previous lemma ensures that the function jT j

I

is invariant

through ��-conversion of its argument.

� If T = Recft; T

0

; �

0

:T

1

g:

If dte[I] admits no normal form, we saw that N was a reducibility candidate.

If dte[I] normalizes to u we prove by induction over u that the set C(u;I; T

0

; T

1

; �

0

) as it

is de�ned in the de�nition of jT j

I

is indeed a reducibility candidate.

{ if u = 0 then jT

0

j

I

is a candidate by induction hypothesis.

{ if u = Sfu

0

g, then C(u

0

;I; T

0

; T

1

; �

0

) is a reducibility candidate by induction hypoth-

esis. Therefore I;�

0

 C(u

0

) is a candidate interpretation, and jT

1

j

I;�

0

 C(u

0

)

is a

reducibility candidate.

{ For all other cases we saw that N was a reducibility candidate.

De�nition Consider a context �. A candidate interpretation I is said to be admissible for � if

and only if for any (x; T

0

) of � one has I(x) 2 jT

0

j

I

.

Theorem 1 Consider a context � and I, an interpretation which is admissible for �. Then

the following holds:

� for any well-formed judgement � ` t : T

0

we have dte[I] 2 jT

0

j

I

.

� for any well-formed judgement � ` T

i

: K

i

and for any judgement � ` T

0

i

:K

i

, if T

i

� T

0

i

then jT

i

j

I

= jT

0

i

j.

Proof Now for the �ght. We proceed by structural induction over the derivation of the typing

judgement; the di�erent cases to consider are each of the typing rules. In what follows, and if

t (resp. t

0

, t

1

, etc) is a proof term, then u (resp. u

0

, u

1

, etc) is the corresponding substituted

pure term dte[I] (resp. dt

0

e[I], dt

1

e[I], etc).

� The rules Nat, zero, successor are trivial.

� The rec rule. drecft; t

0

; t

S

ge[I] is neutral and we show it only reduces to elements of

j(T t)j

I

. As in [9] we reason by induction over �(u) + �(u

0

) + �(u

S

) + l(u

0

) where � is the

maximal number of reduction steps in a term and l(u

0

) the length (number of symbols)

of the normal form u

0

of u.

recfu; u

0

; u

S

g may reduce to:

350

{ recfu

00

; u

0

0

; u

0

S

g where : : :which is element of j(T t

00

)j

I

= j(T t)j

I

by induction hy-

pothesis.

{ u

0

if u = 0; which is element of j(T 0)j

I

by induction hypothesis.

{ (u

S

u

00

recfu

00

; u

0

; u

S

g) if u = Sfu

00

g.

By induction hypothesis we know that

recfu

00

; u

0

; u

S

g 2 j(T u

00

)j

I

:

Therefore

(u

S

u

00

) 2 j(T t

00

)!(T Sft

00

g)j

I

and this implies that

(u

0

S

u

00

recfu

00

; u

0

0

; u

0

S

g) 2 j(T Sft

00

g)j

I

= j(T t)j

I

:

� Formation rule for (t

1

t

2

). The induction hypothesis ensures that u

2

2 jT

2

j

I

and u

1

2

j(x : T

2

)T

1

j

I

. Hence, by de�nition of j(x : T

2

)T

1

j

I

and because of the adequacy lemma,

we know that (u

1

u

2

) 2 jT

1

j

I;x u

2

= jT

1

[x n t

2

]j

I

.

� Formation rule for �

T

0

x:t. The induction Hypothesis ensures that for any term u

0

2 jT

0

j

I

we have u[I;x u

0

] 2 jT

0

j

I;x u

0

. To prove that d�

T

0

x:te[I] = �x:u 2 j(x : T

0

)T

0

j

I

,

we have to show that given any term u

0

2 jT

0

j

I

, (�x:u u

0

) 2 jT

0

j

I;x u

0

. We do so by

induction over �(u) + �(u

0

). The term (�x:u u

0

) is neutral; it may reduce to:

{ (�x:u

0

u

0

0

) where u

0

and u

0

0

are respectively reducts of u and u

0

. This term is element

of jT

0

j

I;x u

0

because of the last induction hypothesis.

{ u[x n u

0

]. But this is element of jT

0

j

I;x u

0

, as we have seen.

� Formation rule for �

K

i

�

i

:t. We have to prove that d�

K

i

�

i

:te[I] = dte[I] 2 j(�

i

:K

i

)T

0

j

I

.

Let C

i

be any reducibility candidate of degree i. Then I;� C

i

is admissible for � ::

(�

i

;K

i

) and so u 2 jT

0

j

I;� C

i

.

� Formation rule for (t T). We have dte[I] = u 2 j(� : K)T

0

j

I

, and so dt T e[I] = u 2

jT

0

j

I;� jT j

I

= jT

0

[� n T]j

I

.

� Formation rule for �

T

0

x:T . �

T

0

x:T may only reduce to:

{ �

T

0

x:T

0

with T � T

0

. By induction hypothesis, for any u

0

, jT j

I;x u

0

= jT

0

j

I;x u

0

.

The result follows.

{ �

T

0

0

x:T with T

0

� T

0

0

. By de�nition, �

T

0

0

x:T j

I

= j�

T

0

x:T j

I

.

� Formation rule for (T t). If t � t

0

, we know that j(T t)j

I

= j(T t

0

)j

I

. If t � T

0

, by

induction hypothesis, j(T t)j

I

= j(T

0

t)j

I

. Finally if T = �

T

0

x:T

0

, by de�nition and the

adequacy lemma, we have j(T t)j

I

= jT

0

[x n t]j

I

.

� The Rec rule. T = Recft; T

0

; �:T

1

g may reduce to:

{ Recft

0

; T

0

; �:T

1

g, in which case we have already seen that jT j

I

remains unchanged

(the reduction takes place in a proof-subterm).

351

{ Recft; T

0

0

; �:T

1

g or Recft; T

0

; �:T

0

1

g. In which case the induction hypothesis easily

enables us to prove that jT j

I

remains unchanged (by induction over the de�nition of

jT j

I

).

{ T

0

, if dte[I] = 0. but then we have jT j

I

= jT

0

j

I

.

{ (T

1

[� n Recft

0

; T

0

; �:T

1

g] t

0

), if dte[I] = Sft

0

g. But by induction hypothesis, we know

that dte[I] is strongly normalizable

5

; the desired equality follows.

� The var rule. Immediate, by de�nition.

� The weak rule. Any interpretation which is admissible for � :: (a; V) is also valid for �.

The result follows.

� The redT rule. All we have to check is that if T and T

0

are well-typed and T =

��

T

0

then

there is a path from T to T

0

which only goes through well-typed predicates. This is true

because subject-reduction holds and because of the Church-Rosser property.

� The RedK rule. Similar.

3 Strong normalization for erased terms implies strong normal-

ization for typed terms

As in [7] we will prove the strong normalization for all the well-typed objects, using a coding.

But instead of coding our types as simply typed lambda terms, we will code the well-typed

kinds and predicates as proof-terms.

In what follows, o and c

o

are respectively a fresh type variable, and a fresh term variable.

We suppose also that to each predicate variable � we may associate a distinct term variable �,

which, we will suppose, has not been used before.

De�nition. We de�ne the application � from kinds to predicates:

� �(Prop) = o

� �((x : T)K) = (x : T)�(K)

De�nition For any context �, we de�ne the context � by:

� [] = [] :: (o;Prop) :: (c

o

; o)

� � :: (x; T) = � :: (x; T)

� � :: (�;K) = � :: (�;K) :: (�; �(K))

We may also de�ne:

D

Prop

� c

o

D

(x:T)K

� �

T

x:D

K

which of type �(K) in any context in which �(K) is well-typed.

C

Prop

� o C

(x:T)K

� �

T

x:C

K

which is of type K in any context in which K is well-typed.

5

Note that this is the only case where we use the reducibility property for a proof term inside a predicate.

352

Now, to any object M (proof-term, predicate or kind) we may associate the following proof-

term [M]:

[x] = x

[(t t

0

)] = ([t] [t

0

])

[�

T

x:t] = �

T

x:(�

o

:[t] [T])

[�

K

�:t] = �

K

�:(�

o

:[t] [K])

[(t T)] = (�

�(K)

:[t] [T] T)

[recft; t

0

; t

S

g] = recf[t]; [t

0

]; [t

S

]g

[�] = �

[(T t)] = ([T] [t])

[�

T

0

x:T] = �

T

0

x:(�

o

:[T] [T

0

])

[Recft; T

0

; �:T

1

g] = recf[t]; [T

0

]; �

o

�:([T

1

][� n o])g

[(x : T

1

)T

2

] = (�

o

:�

T

1

!o

:c

o

[T

1

] (�

T

1

x:[T

2

]))

[(� : K)T] = (�

�(K)

�:�

K

�:�

o

:[T] [K] D

K

C

K

)

[Prop] = o

[(x : T)K] = (�

o

:[K] [T])

.

Lemma 7 If � ` t:T then � ` [t]:T .

Proof By structural induction over the typing judgement. For induction loading, one also

proves that if � ` T :K then � ` [T]:�(K) and � ` [K]:o.

Lemma 8 If t � t

0

, then d[t]e �

+

d[t

0

]e.

Proof By induction over t, and because of the facts:

� d[t[x n t

0

]]e = d[t]e[x n d[t

0

]e]

� d[t[� n T]]e = d[t]e[� n d[T]e]

Theorem 2 Any well-typed object is strongly normalizable.

Proof The lemma above and theorem 1 imply that any well-typed proof-term is strongly

normalizable. It is easy to show that this fact also implies the strong normalization of any

well-typed kind or predicate.

4 Some remarks about large elimination schemes

Let us try to give some examples of useful or amusing ways to use large elimination schemes.

In what follows we do not restrict large elimination schemes to integers. We will also use the

notation of the system Coq

6

. Not all the examples given below can be run in the currently

distributed version of the system because no large elimination is provided for computational

inductive types at the moment.

6

[x:T]t for abstraction and (x:T)T' for quanti�cation.

353

4.1 Inversion of inductive predicates

In the hitherto developed Coq examples, this is probably the most widely used application of

large elimination schemes. Actually it is a generalization of the 0 6= 1 proof. We will simply

give an example, taken from the proof of sorting algorithms [4]. The problem is to de�ne what

it means for a list to be sorted. Lists are de�ned as usual:

Variable A:Set.

Inductive Set list = nil : list | cons : A -> list -> list.

Given a binary predicate variable over A, one de�nes the sorting property as an inductive

predicate:

Variable inf : A -> A -> Prop.

Inductive Definition list_Lowert [a:A] : list -> Prop =

nil_low : (list_Lowert a nil)

| cons_low : (b:A)(l:list)(inf a b)->(list_Lowert a (cons b l)).

Inductive Definition sort : list -> Prop =

nil_sort : (sort nil)

| cons_sort : (a:A)(l:list)(sort l)->(list_Lowert a l)->(sort (cons a l)).

This de�nition is quite natural. The problem is that, in practice, one often needs properties

like:

(sort (cons a l))->(list_lowert a l)

or similarly:

(list_lowert a (cons b l))->(inf a b).

The point is, that this is based on the fact that nil_low cannot be used to prove (sort a l);

i.e. it implicitly uses the fact that nil and cons are di�erent. Therefore, in order to prove the

properties above, we de�ne two new predicates, using large elimination, which are respectively

equivalent de list_lowert and sort:

Definition list_Lowert2 =

[a:A][l:list](<Prop> Match l with

(* nil *) True

(* cons b l *) [b:A][l:list][H:Prop](inf a b)).

Definition sort_inv

[l:list](<Prop>Match l with

(* nil *) True

(* cons a l *) [a:A][l:list][H:Prop](sort l)/\(list_Lowert a l)).

It is easy to prove the equivalences, which allows us to get the desired properties:

(sort (cons a l)) is equivalent to (sort_inv (cons a l)) which reduces to

(sort l)/\(list_lowert a l). Similar examples can be found in [5, 13].

4.2 ML dynamics

The original motivation for large elimination schemes was to enhance the system from a logical

point of view, i.e. being able to prove new properties. As long as the normalization problem

354

was open, not very much attention was paid to the possibility to use them in the computational

part. This example and the ones below are meant to show that large elimination schemes allow

to type new interesting programs.

It is easy to de�ne an inductive structure which is trivially isomorphic to the types of simple

typed �-calculus. For example:

Inductive Definition MLtype : Set =

MLnat : MLtype

| MLarrow : MLtype -> MLtype -> MLtype.

allows us to represent the types of functions and functionals over natural numbers. Adding

other base types, sums, products, etc is of course no problem.

The point is that the large elimination scheme allows us to build the actual simple type out

of its representation of type MLtype:

Definition MLtrad = [rT:MLtype]

(<Set>Match rT with

(* MLnat *) nat

(* (MLarrow T1 T2) *)

[T1:MLtype][S1:Set][T2:MLtype][S2:Set](S1->S2))

: MLtype -> Set.

The remarkable point is that, say, (MLtrad (MLarrow MLnat MLnat)) will actually reduce (i.e.

is syntactically equivalent) to the type nat->nat. This is exactly what we need in order to

de�ne Dynamics like in ML [1], but without any extension of the type system. A dynamic is a

pair composed of a type representation and an element of the corresponding type:

Inductive Definition MLdyn : Set =

Dyn_intro : (T:MLtype)(MLtrad T)->MLdyn.

Note that this construction can be extended in order to represent, for instance, polymorphic

(system F) types and dynamics.

4.3 Polymorphism

One may notice that in order to de�ne dynamics in the paragraph above, we did not make use

of polymorphism; hence this construction can be done in a �rst-order system. On the other

hand, the new ability to represent types as �rst-order objects and then translate them back into

types, allows us to de�ne certain polymorphic functions. The point being, that we can quantify

over type representations:

Definition Church = (a:MLtype)

(MLtrad a)

->((MLtrad a)->(MLtrad a))

->(MLtrad a).

Definition Church0 = [a:MLtype][x:(MLtrad a)][f:(MLtrad a)->(MLtrad a)]x.

Definition ChurchS = [n:Church]

[a:MLtype]

[x:(MLtrad a)][f:(MLtrad a)->(MLtrad a)]

(f (n a x f)).

355

It is worth noting that this type system:

� is strictly more expressive that ML polymorphism: we can impose that the argument of

some function is polymorphic. For instance ChurchS can only be applied to a polymorphic

argument.

� does not embed system F: we cannot represent universally quanti�ed type like 8�:T and

hence we cannot apply its representation to some Church integer for instance.

4.4 Mutually recursive types

The large elimination feature o�ers a possible solution to the problem of mutually recursive

types. Again, the idea is best explained through an example. The following de�nition does not,

at �rst, �t into the framework of [3]:

expr = Num : nat -> expr

| closure : expr -> Env -> expr

and env = nil : Env

| cons : term -> Env -> Env.

We may however de�ne an inductive family of Sets indexed by booleans:

Inductive Definition P : bool -> Set =

Num : nat -> (P true)

| closure : (P true)->(P false)->(P true)

| nil : (P false)

| cons : (P true)->(P false)->(P false).

Env := (P false) expr := (P true)

The point is that we may now get the expected recursive elimination schemes thanks to large

elimination. For example we can prove:

(Q:Env->Prop)(Q nil)->

((E:Env)(Q E)->(t:expr)(Q (cons t E)))->

(F:Env)(Q F).

Acknowledgements

A lot of the presented material is due to, or has been shown to me by Christine Paulin-Mohring.

I would also like to thank Hugo Herbelin and Thorsten Altenkirch for their insightful remarks.

References

[1] M. Abadi, L. Cardelli, B. Pierce, G. Plotkin. \Dynamic Typing in a Statically Typed

Language." Conference version in Proceedings of POPL 1989. Extended version in ACM

Transactions on Programming Languages and Systems, vol. 13, pp. 237-268, 1991.

[2] Th. Coquand, J. Gallier. \A Proof of Strong Normalization For the Theory of Construc-

tions Using a Kripke-like Interpretation". Proceedings of the �rst BRA workshop on Log-

ical Frameworks, G. Huet and G. Plotkin Eds. Antibes, 1990.

356

[3] Th. Coquand, Ch. Paulin-Mohring. \Inductively De�ned Types". Proceedings of COLOG-

88, P. Martin-L�of and G. Mints Eds. LNCS 417. Tallin, 1988.

[4] G. Dowek, A. Felty, H. Herbelin, G. Huet, Ch. Paulin-Mohring, B. Werner. \The Coq

Proof Assistant User's Guide, Version 5.6." INRIA, Technical Report 134, 1991.

[5] G. Huet. \The Gildbreath Trick: A case study in axiomatisation and proof development

in the Coq proof assistant." INRIA research report 1511, 1991.

[6] J. Gallier. \On Girard's Candidats de R�eductibilit�e, Logic and Computer Science, P.

Odifreddi (Ed.), Academic Press, pp. 123-203, London, 1990.

[7] H. Geuvers, M.-J. Nederhof. \A Modular Proof of Strong Normalization for the Calculus

of Constructions". Journal of Functional Programming, 1991.

[8] J.-Y. Girard. \Interpr�etation fonctionnelle et �elimination des coupures de l'arithm�etique

d'ordre sup�erieur". Th�ese d'Etat, Universit�e Paris VII, 1972.

[9] J.-Y. Girard. \Proofs and Types". Cambridge University Press, 1989.

[10] K. G�odel. \Uber eine bisher noch nicht ben�utzte Erweiterung des �niten Standpunktes."

Reprinted with English translation in the Collected Works, vol. 2, pp. 240-251, Oxford

University Press, 1990. Original paper in Dialectica, Vol. 12, 1958.

[11] J.-L. Krivine. \Lambda-calcul, types et mod�eles". Masson, 1990.

[12] Ch. Paulin-Mohring. \Extraction de Programmes dans le Calcul des Constructions." Th�ese

de Doctorat, Universit�e Paris VII, 1989.

[13] Ch. Paulin-Mohring, B. Werner. \Synthesis of ML programs in the system Coq." Submit-

ted to the Journal of Symbolic Computation.

[14] J. Smith. \Propositional Functions and Families of Types." Notre Dame Journal of Formal

Logic, Vol. 30, number 3, 1989.

357

